Sviluppo e test del primo livello di trigger del progetto spaziale JEM-EUSO

Development and testing of the first trigger level of the spatial project JEM-EUSO

Candidato: Gregorio Suino

Relatore: Mario Edoardo Bertaina

Summary

- JEM-EUSO experiment
- JEM-EUSO 1st level trigger logic
- Test of trigger logic at TurLab
- Path finder: EUSO-Balloon
- Offline analysis of trigger logic using EUSO-Balloon data
- Upgrades of trigger logic

JEM-EUSO

Detection of cosmic ray of E>5×10¹⁹ eV

- Orbit height: 400 km
- Orbit period: 90'
- Speed of International Space Station: 7 km/s
- Pixel covered area at the ground: 500×500 m²
- Single photon counting
- Gate Time Unit (GTU): 2,5 µs
- Standard background (BCKG) on ocean : 500 phe·m⁻²·ns⁻¹·sr⁻¹ ~ 1 phe·pix⁻¹GTU⁻¹

The JEM-EUSO detector

4

First Target:

- Extreme Energy Cosmic Ray (EECR) & Extensive Air Shower (EAS):
- Duration: ~ 200 μs
- Intensity: 5 10 counts·pix⁻¹GTU⁻¹

Simulation of a 2×10²⁰ eV EECR as detected by JEM-EUSO

Duration and intensity of different light sources

Source	Duration	Intensity [ph·pix ⁻¹ ·GTU ⁻¹]	Extension on focal surface
Cosmic Ray	~ 200 µs	25 - 60	3×3 pixels box
Lightning	1 – 10 ms	$10^3 - 10^6$	PDM - FS
Meteor	100 ms – 2 s	500 - 2500	MAPMT
City	~ 1 s	50 - 500	Some pixels - FS
BCKG		~1	FS

Trigger

- Purpose: on board and real time data reduction
- GTU: 2,5 µs (4×10⁵ GTU/s) roughly corresponds to the time a light signal takes to cross the pixel's diagonal for an horizontal shower (0.75 km)
- Amount of data: 1 Tb/s

 $3,2 \times 10^5 pixel \times 4 \times 10^5 GTU / s \times 8bit / pixel \approx 1Tb / s$

- Available telemetry resources: 300 kb/s
- Needed data reduction: 3×10⁶ (1st + 2nd TL)

1st Level Trigger: persistency tracking trigger (PTT)

- main objective: reduce the rate of fake triggers to 1Hz/EC (9 Hz/PDM)
- Cosmic ray shower:
 - generates persistent and spatially confined signal excesses above BCKG
 - the signal excess lasts at most 36 GTUs in the EC FoV
- 1st Level Trigger:
 - operates at EC level
 - works with 128 GTU blocks
 - searches for signal excesses in 3×3 boxes lasting a few GTUs.

Trigger logic: the 3×3 pixel box

- 3×3 pixel boxes.
- 36 boxes in total in each MAPMT.
- Boxes work independently.
- They partially overlap.
- They cover the entire MAPMT.
- Different MAPMTs do not share any box.

9

Trigger logic

- * N_{C1}: photoelectron counts of each pixel
- N_{C2}: photoelectron counts excess calculated over pixel threshold n^{pix}

$$N_{C2} = N_{C1} - (n^{pix} - 1)$$

- Excesses on the 3×3 boxes summed up over a number of GTU N_{pst}
- Trigger is issued if the summation is greater or equal than a settled threshold n^{box}

$$\sum_{i=1}^{N_{pst}} \sum_{3 \times 3} N_{C2} \ge n^{box}$$

Example parameters							
n ^{pix}	3						
n ^{box}	39						
N _{pst}	5						

Example now!

Example: trigger is issued

 $N_{C2} = N_{C1} - n_{pix}^{thr} + 1$

Thresholds

Dynamic threshold setting

- The EC subdivided into 32 2×4 boxes
- 2×4 pixels = 1×2 km² area at the ground
- no overlap
- Using a 128 GTU average the relative error is of the order of 3%
- threshold set according to the maximum average background every 128 GTU

Implemented, now testing

• 1st TL implemented in FORTRAN, easy to: read, debug, run and modify.

- 1st TL also implemented in VHDL code to configure FPGA
- FPGA resources employed: 7%
- Cross check between VHDL and FORTRAN: same input \rightarrow same output.

TurLab current setup

- Rotating tank replicates movement of FoV
- 5×5 pixels MAPMT
- One lens
- Light sources
- Different albedo materials
- electronics

15

TurLab replicas

[cts]

[cts]

16

Transition over a city

Lightning

EUSO-Balloon

17

EUSO-Balloon

UV light sources:

- LED: pointed directly to detector
- Flash: pointed directly to detector
- UV Laser: laser pulsed across FoV
- 5 mJ Laser ~ 10²⁰ eV CR

EUSO-Balloon flight

Date of flight: 08/25/2015

Vertical profile of the 9 hours flight of EUSO-Balloon

Horizontal profile of the 9 hours flight of EUSO-Balloon

Data from PDM and IR camera

Laser track as detected by the PDM

Evolution of one pixel during the entire flight

Trigger conditions

- **BCKG** conditions:
- Ground light sources
- Background fluctuation
- Balloon rotation movement
- Data taking conditions:
- GPS synchronization between helicop
- Taking 128 GTU packets with 20 Hz rate, a problem for our thresholds algorithm
- Most serious problems: balloon rotation and delay from packet to packet

First check of trigger response

Problems with raw data

Out of control pixels

- Isolated pixels, in some GTUs, give us a lot of photon counts.
- This number is not due to light source
- It is a problem for the trigger logic

Low efficiency areas

- Some pixels of the EC have very low gain
- BCKG on 2×4 boxes is underestimated

23

Our solution: the mask

24

We generate a mask to:

- Remove all the pixels that give too many counts
- Do not count turned off pixels in the 2×4 average threshold algorithm to calculate a more reasonable BCKG

1st TL performance

041731 - 052559 (dark BCKG)

Run	Trigger	Laser	Other sources
041731	16	14	2
042351	1	1	0
042407	15	14	1
042614	3	3	0
042806	9	0	9
042957	9	7	2
043147	0	0	0
043202	20	18	2
043401	5	2	3
051610	25	24	1
051805	7	5	2
051959	6	5	1
052152	15	10	5
052344	1	1	0
052358	38	19	19
052559	14	5	9
	184	128	56
γ	<u>56</u>	66_	Hz
$v - \frac{1}{8}$	$8,\overline{5s}$ ~	F_{I}	PDM

052753 – 254542 (very noisy BCKG)

25

Run	Trigger	Laser	Other sources
052753	199	29	170
052945	272	14	258
053139	29	0	29
053154	141	15	126
053352	283	6	277
053550	101	23	78
053743	167	5	162
053936	43	2	41
053951	221	14	207
054152	93	9	84
054348	272	21	251
054542	269	11	258
	2090	149	1941

 $\nu = \frac{1941}{6,5s} \approx 300 \frac{Hz}{PDM}$

BCKG calculation using single pixel

Thresholds:

- Calculated using single pixel average over 128 GTU
- Settled at MAPMT level

Using "2×4" Algorithm:

- BCKG: 1,5
- n^{pix}: 2
- n^{box}: 53

Using "Single pixel" Algorithm:

MAPMT	BCKG [phe·pix ⁻¹ GTU ⁻¹]	n ^{pix}	n ^{box}
Top left	1,3	2	45
Top right	2,2	3	62
Bottom left	1,3	2	45
Bottom right	1,5	2	53

26

"Single pixel" algorithm performances

041731 - 052559 (dark BCKG)

 $=\frac{17}{2} \approx 2,0$ 8.5*s*

052753 - 254542 (very noisy BCKG)

Run	Trigger	Laser	Other sources
052753	32	29	3
052945	20	14	6
053139	1	0	1
053154	36	14	22
053352	8	6	2
053550	27	23	4
053743	10	5	5
053936	3	1	2
053951	15	14	1
054152	12	9	3
054348	29	21	8
054542	14	12	2
	207	148	59

 $v = \frac{59}{6,5s} \approx 9,1 \frac{Hz}{PDM}$

"2×4" vs "Single Pixel"

Version	Dark BCKG	Ground light source	Total
2×4	128	149	277
Single pixel	126	148	274

sample	N _{2×4}	N _S	$N_{2\times4}$ - N_{S}	$(N_{2\times4}-N_S)/N_{2\times4}$
All	105129	82314	22815	0,22
STD BCKG	28660	24902	3758	0,13
VN BCKG	76469	57412	19057	0,25

There is a 13% loss of triggering boxes as a result of setting thresholds at MAPMT level according to the highest BCKG value on the MAPMT.

Energy Threshold

- Average **signal** on which the trigger shoot: 81±13 counts
- Average **noise** on relative 33 box: 39 ±1 counts

29

- Average **ratio** between the signal and the noise: 2.1±0.3
- This kind of signal excess in expected in a CR event with E ~ 5×10^{18} eV

Conclusions

- The 1st TL of JEM-EUSO was tested at TurLab and using EUSO-Balloon data.
- The original version of the 1st TL was successful triggering on:
 - Replicas of cosmic ray events at TurLab (performed using Arduino platform)
 - Laser events of EUSO-Balloon
- Data from EUSO-Balloon shows too high rate of triggers due to:
 - strong non-uniformity of pixel response,
 - Electronic noise,
 - Not suitable definition of BCKG level.
- "Single Pixel" version of 1st TL implemented:
 - It allows the correct BCKG calculation algorithm,
 - Rate of triggers on laser events decrease of 13%.

Next steps

- Current version of VHDL code employs the 11% of FPGA resources, modifications will be implemented to decrease this use and to better fit with specific FPGA
- Going to test at TurLab an EC similar to balloon one as a part of Eu-HIT project:
 - "Detection and Imaging of turbulent states of ocean and atmosphere by means of a JEM-EUSO-like detector at the TurLab facility (EUSO@TurLab)".
 - Responsible: Dr. Sylvie Dagoret-Campagne Laboratoire de l'Accelerateur Lineaire, Universite Paris Sud-XI
- In next months I will continue those activities with EUSO-Balloon data during an Erasmus Traineeship in Laboratoire de l'Accelerateur Lineaire, Universite Paris Sud-XI.

Thank You!!!

- Pubblications related to my work:
 - M. Bertaina,..., G.Suino,..., for the JEM-EUSO Coll..: "EUSO@TurLab: An experimental replica of ISS orbits" EPJ Web of Conferences, Vol. 89, pag. 03003 (2015)
 - G. Suino et al. for the JEM-EUSO Coll.: "Test of JEM-EUSO 1st level trigger using EUSO-Balloon data", Proc. 34th International Cosmic Ray Conference, Den Haag, 29 Jul - 6 Aug 2015.
 - G. Contino, G. Suino, et al. for the JEM-EUSO Coll.: "The EUSO@TurLab project", Proc. 34th International Cosmic Ray Conference, Den Haag, 29 Jul - 6 Aug 2015.

Lifespan of a CR signal in an EC

Preliminary helicopter triggers

F	Run			EC-II			I	EC-V	,	E	EC-V			E	C-VI	I	E	EC-IX		Helicopter
Туре	number	packet	 gtu	x	У	••••	gtu	X	У	gtu	x	у		gtu	X	У	gtu	X	У	
CPU	052344	84	24	17	43		20	25	25	19	35	22		24	30	13	21	33	14	Y

A laser event is typically characterized by few ECs triggering almost in time.

- In the table we reported:
- For each **packet** and **EC** where a trigger occurs, the **position of the**
- **3×3 cell** which gave the maximum signal excess and the relative **GTU**.
- Founded around 240 laser events
- Still remaining some false trigger!

"Single pixel 2 GTU" algorithm features

Check:

 done on the summation of counts of 3×3 boxes over 2 consecutive GTU Thresholds:

- Calculated using single pixel average over 128 GTU
- Settled at MAPMT level

"Single pixel 2 GTU" algorithm performance

041731 – 052559 (dark BCKG)

052753 – 254542 (very noisy BCKG)

RUN	trigger	true	?
041731	13	11	2
042351	2	1	1
042407	14	14	0
042614	3	3	0
042806	0	6	0
042957	8	5	3
043147	0	0	0
043202	18	18	0
043401	2	2	0
051610	26	25	1
051805	5	5	0
051959	6	5	1
052152	13	10	3
052344	1	1	0
052358	22	18	4
052559	10	5	5
	143	129	20

\mathbf{v}	_		~	$2 \Delta H_7$
V	_	8,5s	~	2,4112

RUN	trigger	true	?
052753	33	27	6
052945	27	15	12
053139	1	0	1
053154	21	13	8
053352	9	6	3
053550	30	24	6
053743	8	5	3
053936	2	2	0
053951	16	14	2
054152	13	9	4
054348	27	21	6
054542	16	12	4
	203	148	55

 $v = \frac{55}{6,5s} \approx 8,5Hz$