Picture credit : M. Garlick

ULTRA-HIGH ENERGY COSMIC RAYS

By Léa Marques

Supervised by **M. Bertaina and A. Di Matteo** University of Torino, Insituto Nazionale di Fisica Nucleare

Plan

- What are cosmic rays?
- How to study cosmic rays?
- Theoretical background on cosmic ray propagation
- Personal project on arrival directions
- Conclusion

What are cosmic rays?

• High-energy charged particles from outer space

Must originate from highly energetic events (SNe, AGN jets, γ ray bursts...)

Energy spectrum?

Mass composition?

Arrival directions?

Mass composition?

Arrival directions?

Mass composition?

UHECR:

at least 50% of protons,

then proportion of

heavier seems to

increase with energy

(details uncertain)

Arrival directions?

- Sky distribution of received CR
- isotropic at low-E
 anisotropies at UHE

7

Low-energy

Direct measurements

Simply analyze primary CR

✤ information is direct
 ♥ hard to detect, especially at very high energies

CERN-AMS on board the ISS, operating since 2017

High-energy

Indirect measurements

CR interacts with the atmosphere: **air showers cascade of particles** A much **more events**

 $\ensuremath{\bigtriangledown}$ primary parameters are **reconstructed**

Pierre Auger Observatory, Argentina

Telescope Array, Utah, USA

Pierre Auger Observatory detection

How does Auger detect cosmic rays?

Cosmic ray propagation in space

Cosmic ray propagation in space

Literature on UHECR sky anisotropies

Combination of Auger and TA data by Di Matteo et al., 2019

$\textbf{High-energy}: \textbf{E} \gtrless \textbf{40} \ \textbf{EeV}$

Project : anisotropies with 10% of Auger?

Centaurus A, active galaxy located in the southern hemisphere

Image credit: ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray)

Only $10\% \approx 1$ year[®] of Auger data is public.

Project

With only 10% of Auger data :

- What conclusions could be drawn on magnetic deflections?
- How significant would those results be?

Method

- focus on Cen A = closest AGN
- Blind search = look for hotspot in UHECR flux map

Flux
$$\phi$$
 of cosmic rays in a region R of the sky: $\phi(R) = \frac{N_{events}(R)}{\omega_{Auger}(R)}$

Flux ϕ of cosmic rays in a region R of the sky: $\phi(R) = \frac{N_{events}(R)}{\omega_{Auger}(R)}$ Exposure of region Rnumber of particles expected to be observed with arrival direction R =(Ra, Dec) \rightarrow in km².sr.yr _ depends on observatory location

- Earth rotation - constant in Ra

Flux ϕ of cosmic rays in a region R of the sky: $\phi(R) = \frac{N_{events}(R)}{(N-R)}$

- 1. Divide the celestial sphere in **pixels** : healpy python library
 - Same surface area for each pixel
 - Resolution : 0.9°

- Divide the celestial sphere in **pixels** : healpix python library 1.
- 2. For each pixel, **count** the number of events and calculate the exposure

- 1. Divide the celestial sphere in **pixels** : healpix python library
- 2. For each pixel, **count** the number of events and calculate the **exposure**
- **3. Smoothing** both the number of counts and the exposure per pixel over the scale of interest : **uniform** filtering

- 1. Divide the celestial sphere in **pixels** : healpix python library
- 2. For each pixel, **count** the number of events and calculate the **exposure**
- 3. Smoothing both the number of counts and the exposure per pixel over the scale of interest : **uniform** filtering
- 4. Divide the smoothed count by the smoothed exposure

Flux map : high energy

Local significance map

Li-Ma significance (Li & Ma, 1983)

For each pixel, comparison between the flux inside and outside of the smoothing region

Presence of a hotspot with a Li-Ma significance of 2.6 at RA = 158° , Dec = -29°

Implications on the magnetic field

Hypotheses

1. Cen A = only source of the hotspot
 Hotspot distance with Cen A = result of regular magnetic deflections
 2. Cen A is a point source at RA=201°, Dec=-43°
 Hotspot width = result of turbulent magnetic deflections only

Implications on the magnetic field

Hypotheses

1. Cen A = only source of the hotspot Hotspot distance with Cen A = result of regular magnetic deflections 2. Cen A is a point source at RA=201°, Dec=-43° Hotspot width = result of turbulent magnetic deflections only

My work
RA = 158°, Dec = -29°
(30 ± 6)°
(43 ± 8)°
(30 ± 6)°

Implications on the magnetic field

Hypotheses

1. Cen A = only source of the hotspot
 Hotspot distance with Cen A = result of regular magnetic deflections
 2. Cen A is a point source at RA=201°, Dec=-43°
 Hotspot width = result of turbulent magnetic deflections only

	My work	Di Matteo et al., 2019
Position of hotspot	RA = 158°, Dec = -29°	RA = 192.5°, Dec = -50°
Size of hotspot	(30 ± 6)°	(35 ± 3)°
Conclusions		Measured
Regular B deflections	(43 ± 4)°	(9 ± 2)° by me
urbulent B deflections	(30 ± 6)°	(30 ± 6)°

Is 1 year of Auger data enough?

Could an isotropic flux produce such a hotspot?

Monte Carlo simulation

- 1000 simulations
- Each simulation has:
 - The same number of events as was observed above 40 EeV
 - The Auger exposure
 - An isotropic flux
 - The same Li-Ma significance analysis

$$\widehat{S_{simu}} - S_{obs} = 0.9\sigma$$

Not enough data to draw conclusions

Conclusion

Source

• UHECR arrival directions can point near sources outside the Milky Way.

- With 10% of Auger Observatory data :
 - Hotspot near the region of Cen A
 - Induced regular magnetic deflections off compared to literature

- Monte-Carlo simulation shows dataset is not enough to produce significant results.
- To try: targeted search of a hotspot near Cen A

Appendix : More details on Auger

Location: Mendoza Province, Argentina 35.2°S, 69.2°W, 1400 m a.s.l. (≈ 880 g/cm²)
Main array for UHE taking data since 01 Jan 2004:
SD: 1600 water Cherenkov detectors on a 1.5 km-spacing triangular grid (3 000 km² total)
FD: 4 sites on edge of SD array (24 telescopes total)
Low-energy extension (HEAT and AMIGA):

- 3 extra FD telescopes at higher elevation
- 61 extra SDs with 750 m spacing

Aperture: $\theta_{\text{zenith}} < 80^{\circ}$ (declination $\delta < +44.8^{\circ}$) Systematic uncertainty on energy scale: $\pm 14\%$

Appendix : Galactic magnetic field

Regular magnetic field

• Large scale

Turbulent magnetic field

- Small scale
- Random
- Supernovae + other outflows + hydrodynamic turbulence
- Striated random fields : aligned orientation overlarge scale, but sign and strength vary
 - differential rotation of a medium containing small-scale random fields
 - levitation of bubbles of hot plasma carrying trapped randomly oriented fields away from the disk

Lots of models, often parametrized on a lot of observables Order of magnitude : 3 mG

Appendix : Magnetic field deflections

For GMF: Calculate R, compare with values from article (?), scale with energy since defl propto E

IGMF: upper bound is lowest GMF lower bound (upper bound found in an article)

	10 EeV	50 EeV
Proton	15 – 40 °	3 – 8 °
CNO	100 – 250 °	20 – 50 °
Heavy nuclei	diffusive	80 – 200 °

Table of Galactic magnetic deflections with respect to composition and energy A. di Matteo, 2021 from Šmída, 2015 simulations

Appendix : Li-Ma significance

$$S_{LM} = -2\ln\left(\frac{P_r(X|E_0,\hat{T}_c)}{P_r(X|\hat{E},\hat{T})}\right) \sim \chi^2(r)$$

- X : observed data N_{in}, N_{out}
- (E, T) : unknown parameters $E = N_s$ = number of counts originating from Cen A $T = N_B$ = number of counts originating from the isotropic background
- E_0 : null hypothesis (the observed data are a result of noise) $E = \langle N_s \rangle = 0$
- ^ : maximum likelihood estimates of parameters E and T
- : maximum likelihood estimate of parameter T for $E = E_0$
- T_{r}^{c} : number of parameters involved in the null hypothesis (here 1)

Appendix : Other possible sources

• NGC 5090 : radio galaxy

Appendix : More details on air showers

- The different final particles
- What they teach us about primary cosmic rays
- How parameters are reconstructed