
Matteo Abrate
Master’s Degree in Physics of Advanced Technology
ID: 858346
Year: 2022/2023
Supervisor: Mario Bertaina
Co-supervisors: Antonio Montanaro, Emanuele Valpreda

Implementation and
analysis of the Stack-CNN
algorithm on FPGA board

Introduction
1. Space Debris
2. Stack CNN algorithm

Development
1. Pytorch CNN models
2. Quantization
3. Dataset – Stacking Method
4. Testing and Tweaking of models
5. Implementation
6. Conclusions & Future Steps

Index:

Introduction
1. Space Debris
2. Stack CNN algorithm

1. Space Debris

Evolution of (tracked) objects in Low Earth Orbit (2022 Annual Report by ESA)

Space debris are defunct human-made
objects in space, principally in Earth
orbit (less than 2,000 km), which no
longer serve a useful function.
These include derelict spacecraft,
nonfunctional spacecraft and
abandoned launch vehicle stages,
mission-related debris, and particularly
numerous in Earth orbit, fragmentation
debris from the breakup of derelict
rocket bodies and spacecraft.

Average impact speed in Low Earth
Orbit (300-1000 km): 10 km/s.
Maximums: >14 km/s due to orbital
eccentricity.
Estimated number of debris as of
January 2019.
- 1 cm diameter: 128 million
- 1-10 cm diameter: 900,000

1

Stack-CNN is a trigger algorithm developed by the researcher Antonio Montanaro, which involves the use of two
different techniques, a Stacking procedure and a Convolutional Neural Network.

2. Stack-CNN Algorithm

Stacking Procedure
The Stacking Method is applied to the detection of

moving objects moving linearly in the field of view of
the detector. In our case objects are space debris.

Convolutional Neural Network
Convolutional Neural Networks (CNNs or ConvNets) are a class of

Neural Networks most commonly used in Computer Vision
(image classification, video analysis). The advantage with respect

to other algorithms is that the network is able to automatically
extract image features without any prior knowledge.

SNR comparison between Stacked Image and Single Image (Simulated)

2

2.1 Stacking Method
This powerful algorithm is capable of
computing the speed and the angle of the
detected object.
The stacking method applied to an object
with fixed speed v and direction
θ can be divided in the shifting and adding
procedures.

- Shifting: Considering n frames of raw data
the pixels are shifted in the opposite
directions of the moving object’s trajectory.
The movement (dx,dy) depends on the time,
speed and direction and it’s used to roll the
image back in the starting position (x0, y0).

- Adding: Sequentially the shifted images
are summed in order to achieve a better SNR
compared to a single image by a 𝑛 factor.

3

2.2 Stacking Method

4

Images are shifted in θ direction through steps of 15°, from 0° to 360°, and with a step of 2 km/s for speed
starting from 5 km/s until 11 km/s. This leads to:
- 4 speed combinations
- 24 combinations for direction
- Total number of combo: 96

For 80 SD, in total there are 7680 combinations. There are just few right combinations (about 4%) among
the entire set.

Development

1. Pytorch CNN Model
2. Quantization
3. Dataset – Stacking Method
4. Testing and Tweaking of Models
5. Implementation
6. Conclusions & Future Steps

PyTorch is a machine learning framework based on the Torch
library, used for applications such as computer vision and natural
language processing.

Brevitas is a PyTorch library for neural network quantization, with
support for both Post-Training Quantization (PTQ) and
Quantization-Aware Training (QAT). Given a model made of
PyTorch layers, the user has to replace them in the code with their
Brevitas implementation. This library offers several quantized
versions of the common PyTorch layers.

class brevitas_model(Module):
def __init__(self):

super(brevitas_model, self).__init__()
self.quant_inp = qnn.QuantIdentity(bit_width=8, return_quant_tensor=True)
self.conv1 = qnn.QuantConv2d(in_channels=1, out_channels=10, kernel_size=(3,3),

stride=(1,1), padding=(1,1), weight_bit_width=8, bias_quant=Int8Bias)
self.relu1 = qnn.QuantReLU(bit_width=8, return_quant_tensor=True)
self.conv2 = qnn.QuantConv2d(in_channels=10, out_channels=5, kernel_size=(3,3),

stride=(1,1), padding=(1,1),weight_bit_width=8, bias_quant=Int8Bias)
self.relu2 = qnn.QuantReLU(bit_width=8, return_quant_tensor=True)
self.conv3 = qnn.QuantConv2d(in_channels=5, out_channels=1, kernel_size=(3,3),

stride=(1,1), padding=(1,1), weight_bit_width=8, bias_quant=Int8Bias)

5

self.relu3 = qnn.QuantReLU(bit_width=8, return_quant_tensor=True)
self.flatten = nn.Flatten()
self.fc1 = qnn.QuantLinear(144, 72, bias=True, weight_bit_width=8,

bias_quant=Int8Bias)
self.relu4 = qnn.QuantReLU(bit_width=8, return_quant_tensor=True)
self.fc2 = qnn.QuantLinear(72, 72, bias=True, weight_bit_width=8,

bias_quant=Int8Bias)
self.relu5 = qnn.QuantReLU(bit_width=8, return_quant_tensor=True)
self.fc3 = qnn.QuantLinear(72, 1, bias=True, weight_bit_width=8,

bias_quant=Int8Bias)

1. Pytorch CNN model

Scale (sc) and Threshold (th) are two
parameters that are necessary for quantization.

• The Scale parameter (sc) is used to scale low-
precision data back to floating-point values, it
is stored with complete precision.

• The Threshold (th) is defined as the maximum
absolute value in the input tensor X.

• int_th is the integer representation of the
threshold value.

• IntW is the quantized weight value.

2. Quantization

6

2.1 Quantization

Input Tensor

The QuantConv2d layer is implemented inheriting two classes: Conv2d, the class that
implements the convolution in PyTorch and that instantiates the weight and bias parameters,
and QuantWBIOL which receives the weight and bias of Conv2d and compute its quantized
version, so that the convolution is performed using quantized parameters.

Scheme of the implementation of the QuantConv2d layer in Brevitas, made inheriting the
standard PyTorch Conv2.

7

3. Dataset – Stacking Method
One of the most important tasks in working with neural networks is the dataset organization.
It has to be:
• Statistical: The set must include data from a statistical sample with the main features to be learnt.
• Big: More data are provided, more easily the network will learn to generalize.
• Preprocessed: All the inputs have to be preprocessed in the same way.

8

9

In the graph is shown the training for the
Brevitas CNN, it was carried over the
same 480 stacked images dataset.

Parameters of the model:
Optimizer: ADAM
Learning Rate: 1e-4 & 1e-5
Betas = (0.9, 0.999)
Epsilon = 1e-5
Weight decay = 1e-5
L.R. momentum = 0.9
Loss Function = MSE

Also L.R.=0.001 was tested but
the model failed the training.

4. Testing and Tweaking of models

10

In the graph is shown the best training for
the Brevitas CNN, it was carried over the
same 480 stacked images dataset.

Parameters of the model:
Optimizer: ADAM
Learning Rate: 1e-5
Betas = (0.9, 0.999)
Epsilon = 1e-5
Weight decay = 1e-5
L.R. momentum = 0.9
Loss Function = MSE

This 200 epochs training was primarly
used to determine at which epoch doing
Early Stopping.
It is a form of regularization used to avoid
overfitting when training a learner with
an iterative method. The best results
were obtained at the epoch number 122.

4.1 Best model

Early stopping epoch = 122

Early Stopping epoch = 122

5. Implementation

11

The FINN project is an experimental framework from Xilinx
Research Labs to explore deep neural network inference on
FPGAs.

It specifically targets quantized neural networks (QNNs), with
emphasis on generating dataflow-style architectures
customized for each network. The key components are
illustrated in the figure, including tools for training quantized
neural networks (Brevitas), the FINN compiler, and the finn-
hlslib Vivado HLS library of FPGA components for QNNs.

On a FPGA platform drawing less than 25 W total system power,
FINN demonstrate up to 12.3 million image classifications per
second with 0.31 µs latency on the MNIST dataset with 95.8%
accuracy.

5.1 Implementation - ONNX

9

Brevitas Model

12

5.2 LowerConvsToMatMul Transformation
Our starting ONNX model presents Conv
nodes, they have to be replaced using the
LowerConvsToMatMul transformation. This
transformation is one of the most relevant
from the hardware point of view, since it is
strictly related on how finn-hls library
performs the convolution.

When executing LowerConvsToMatMul, FINN
searches in the model for Conv nodes and
replaces them with a pair of Im2Col→MatMul
nodes in case of depthwise convolution.
The input tensor is reshaped in a matrix of
dimension K2 * C × N.

H

W K2 * C

N = nH * nW 13

5.3 Implementation – RTL Simulation

14

RTL Synthesis Main Results

Utilized Total

LUT 28189 504K

LUTRAM 1655 -

FF 15661 461K

DSP 37 1,728

BRAM 17 -

Estimated Throughput
[images/s] 9585.4 -

Throughput [images/s] 4605.9 -

Clock Frequency [mhz] 185.19 -
0.13 ms to process 1 stacked image

through the CNN (Simulation) .

5.4 Implementation Results

Implementation Main Results

Throughput [images/s] 1822,02

Clock Frequency [Mhz] 100

copy_input_data_to_device[ms] 0.85

copy_output_data_from_device[ms] 0.25

0.5 ms to process 1 stacked image
through the CNN (Simulation) .

48 ms to process all the 96
combinations of stacked image

through the CNN (Real Time) .

15

6.1 Conclusions

of the CNN of the
Stack-CNN algorithm.

on Xilinx Zynq UltraScale+
MPSoC ZCU104

of the parameters
(quantized) during training.

on FPGA board.

Quantization

Fine-Tuning

RTL Simulation

Implementation

Implementation on FPGA of the Stack-CNN
algorithm for Space Debris tracking.

16

6.2 Future Steps

Testing the performances
of the complete system

for online detection.

Test inference accuracy
directly on board.

Increasing the
performance of the CNN.

Developing the quantized
online Stacking Module

inside a custom Brevitas
module.

17

THANKS FOR YOUR
ATTENTION

JEM-EUSO project for SD removal
JEM-EUSO is a space-based detector
that records fluorescence light in UV
bandù (290 - 430 nm).

JEM-EUSO, looking down at Earth’s
atmosphere, is also able to detect SD
through albedo phenomenon.

Light reaches only SD and the detector
is covered by Earth’s shadow.

The proposal is then building in
tandem a space-borne pulsed-laser
system.

T.Ebisuzaki et al. Demonstration designs for the remediation of space debris
from the International Space Station, 2015.

Convolutional Neural Networks
1. Learning rate: is a tuning parameter in an optimization algorithm that

determines the step size at each iteration while moving toward a
minimum of a loss function.

2. Loss Function: 𝑀𝑆𝐸 = 1

𝑁
σ𝑖=1
𝑁 𝑦𝑖 − ത𝑦𝑖

2 in classification, it is the penalty

for an incorrect classification of an example.

3. Convolution:

Activation Tensors & Weight Tensors

[https://learnopencv.com/understanding-convolutional-neural-networks-cnn/]

Convolution Operation

2D Input Matrix Image 5x5

Convolution Filter

Weights

[https://medium.com/analytics-vidhya/convolution-padding-stride-and-pooling-in-cnn-13dc1f3ada26]

Feature Masks CNN

[https://www.analyticsvidhya.com/blog/2020/11/tutorial-how-to-visualize-feature-maps-directly-from-cnn-layers/]

If the detection could be achieved within a time scale of tens of
milliseconds an online trigger system could be implemented in a
CubeSat.

CubeSat & Requirements

1U CubeSat CP1 (left) 10x10x11cm
3U CubeSat CP10 (right) 10x10x34cm (NASA)

3U Cubesat solar panel

Mass 127 g

Maximum power Up to 8.4 W in LEO per side

Power efficency 29+% (at EOL)

Current < 504 mA

Voltage 16.8 V (for 7 cells)

https://satsearch.co/products/endurosat-3u-cubesat-solar-panel

	Diapositiva 1
	Diapositiva 2: Index:
	Diapositiva 3
	Diapositiva 4: 1. Space Debris
	Diapositiva 5: 2. Stack-CNN Algorithm
	Diapositiva 6: 2.1 Stacking Method
	Diapositiva 7: 2.2 Stacking Method
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10: 2. Quantization
	Diapositiva 11: 2.1 Quantization
	Diapositiva 12: 3. Dataset – Stacking Method
	Diapositiva 13: 4. Testing and Tweaking of models
	Diapositiva 14: 4.1 Best model
	Diapositiva 15: 5. Implementation
	Diapositiva 16: 5.1 Implementation - ONNX
	Diapositiva 17: 5.2 LowerConvsToMatMul Transformation
	Diapositiva 18: 5.3 Implementation – RTL Simulation
	Diapositiva 19: 5.4 Implementation Results
	Diapositiva 20: 6.1 Conclusions
	Diapositiva 21: 6.2 Future Steps
	Diapositiva 22
	Diapositiva 23: JEM-EUSO project for SD removal
	Diapositiva 24: Convolutional Neural Networks
	Diapositiva 25: Activation Tensors & Weight Tensors
	Diapositiva 26: Convolution Operation
	Diapositiva 27: Feature Masks CNN
	Diapositiva 28: CubeSat & Requirements

