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1. Space Debris

Evolution of (tracked) objects in Low Earth Orbit (2022 Annual Report by ESA) 

Space debris are defunct human-made 
objects in space, principally in Earth 
orbit (less than 2,000 km), which no 
longer serve a useful function.
These include derelict spacecraft, 
nonfunctional spacecraft and 
abandoned launch vehicle stages, 
mission-related debris, and particularly 
numerous in Earth orbit, fragmentation 
debris from the breakup of derelict 
rocket bodies and spacecraft. 

Average impact speed in Low Earth 
Orbit (300-1000 km): 10 km/s.
Maximums: >14 km/s due to orbital 
eccentricity.
Estimated number of debris as of 
January 2019. 
- 1 cm diameter: 128 million  
- 1-10 cm diameter: 900,000 
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Stack-CNN is a trigger algorithm developed by the researcher Antonio Montanaro, which involves the use of two 
different techniques, a Stacking procedure and a Convolutional Neural Network.

2. Stack-CNN Algorithm

Stacking Procedure
The Stacking Method is applied to the detection of 

moving objects moving linearly in the field of view of 
the detector. In our case objects are space debris.

Convolutional Neural Network
Convolutional Neural Networks (CNNs or ConvNets) are a class of 

Neural Networks most commonly used in Computer Vision 
(image classification, video analysis). The advantage with respect 

to other algorithms is that the network is able to automatically 
extract image features without any prior knowledge.

SNR comparison between Stacked Image and Single Image (Simulated)
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2.1 Stacking Method
This powerful algorithm is capable of 
computing the speed and the angle of the 
detected object.
The stacking method applied to an object 
with fixed speed v and direction
θ can be divided in the shifting and adding 
procedures.

- Shifting: Considering n frames of raw data 
the pixels are shifted in the opposite 
directions of the moving object’s trajectory.
The movement (dx,dy) depends on the time, 
speed and direction and it’s used to roll the 
image back in the starting position (x0, y0).

- Adding: Sequentially the shifted images 
are summed in order to achieve a better SNR 
compared to a single image by a 𝑛 factor. 
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2.2 Stacking Method
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Images are shifted in θ direction through steps of 15°, from 0° to 360°, and with a step of 2 km/s for speed 
starting from 5 km/s until 11 km/s. This leads to:
- 4 speed combinations 
- 24 combinations for direction
- Total number of combo: 96

For 80 SD, in total there are 7680 combinations. There are just few right combinations (about 4%) among 
the entire set. 
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PyTorch is a machine learning framework based on the Torch 
library, used for applications such as computer vision and natural 
language processing.

Brevitas is a PyTorch library for neural network quantization, with 
support for both Post-Training Quantization (PTQ) and 
Quantization-Aware Training (QAT). Given a model made of 
PyTorch layers, the user has to replace them in the code with their 
Brevitas implementation. This library offers several quantized 
versions of the common PyTorch layers.

class brevitas_model(Module):
def __init__(self):

super(brevitas_model, self).__init__()
self.quant_inp = qnn.QuantIdentity(bit_width=8, return_quant_tensor=True)
self.conv1 = qnn.QuantConv2d(in_channels=1, out_channels=10, kernel_size=(3,3),

stride=(1,1), padding=(1,1), weight_bit_width=8, bias_quant=Int8Bias)
self.relu1 = qnn.QuantReLU(bit_width=8, return_quant_tensor=True)
self.conv2 = qnn.QuantConv2d(in_channels=10, out_channels=5, kernel_size=(3,3),

stride=(1,1), padding=(1,1),weight_bit_width=8, bias_quant=Int8Bias)
self.relu2 = qnn.QuantReLU(bit_width=8, return_quant_tensor=True)
self.conv3 = qnn.QuantConv2d(in_channels=5, out_channels=1, kernel_size=(3,3),

stride=(1,1), padding=(1,1), weight_bit_width=8, bias_quant=Int8Bias)
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self.relu3 = qnn.QuantReLU(bit_width=8, return_quant_tensor=True)
self.flatten = nn.Flatten()
self.fc1 = qnn.QuantLinear(144, 72, bias=True, weight_bit_width=8,

bias_quant=Int8Bias)
self.relu4 = qnn.QuantReLU(bit_width=8, return_quant_tensor=True)
self.fc2 = qnn.QuantLinear(72, 72, bias=True, weight_bit_width=8,

bias_quant=Int8Bias)
self.relu5 = qnn.QuantReLU(bit_width=8, return_quant_tensor=True)
self.fc3 = qnn.QuantLinear(72, 1, bias=True, weight_bit_width=8,

bias_quant=Int8Bias)

1. Pytorch CNN model



Scale (sc) and Threshold (th) are two 
parameters that are necessary for quantization. 

• The Scale parameter (sc) is used to scale low-
precision data back to floating-point values, it 
is stored with complete precision. 

• The Threshold (th) is defined as the maximum 
absolute value in the input tensor X.

• int_th is the integer representation of the 
threshold value.

• IntW is the quantized weight value.

2. Quantization 
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2.1 Quantization 

Input Tensor

The QuantConv2d layer is implemented inheriting two classes: Conv2d, the class that 
implements the convolution in PyTorch and that instantiates the weight and bias parameters, 
and QuantWBIOL which receives the weight and bias of Conv2d and compute its quantized 
version, so that the convolution is performed using quantized parameters.

Scheme of the implementation of the QuantConv2d layer in Brevitas, made inheriting the 
standard PyTorch Conv2.
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3. Dataset – Stacking Method
One of the most important tasks in working with neural networks is the dataset organization.
It has to be:
• Statistical: The set must include data from a statistical sample with the main features to be learnt.
• Big: More data are provided, more easily the network will learn to generalize.
• Preprocessed: All the inputs have to be preprocessed in the same way.

8



9

In the graph is shown the training for the 
Brevitas CNN, it was carried over the 
same 480 stacked images dataset.

Parameters of the model:
Optimizer: ADAM
Learning Rate: 1e-4 & 1e-5
Betas = (0.9, 0.999)
Epsilon = 1e-5
Weight decay = 1e-5
L.R. momentum = 0.9
Loss Function = MSE

Also L.R.=0.001 was tested but 
the model failed the training.

4. Testing and Tweaking of models
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In the graph is shown the best training for 
the Brevitas CNN, it was carried over the 
same 480 stacked images dataset.

Parameters of the model:
Optimizer: ADAM
Learning Rate: 1e-5
Betas = (0.9, 0.999)
Epsilon = 1e-5
Weight decay = 1e-5
L.R. momentum = 0.9
Loss Function = MSE

This 200 epochs training was primarly 
used to determine at which epoch doing 
Early Stopping. 
It is a form of regularization used to avoid 
overfitting when training a learner with 
an iterative method. The best results 
were obtained at the epoch number 122.

4.1 Best model 

Early stopping epoch = 122

Early Stopping epoch = 122



5. Implementation
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The FINN project is an experimental framework from Xilinx 
Research Labs to explore deep neural network inference on 
FPGAs. 

It specifically targets quantized neural networks (QNNs), with 
emphasis on generating dataflow-style architectures 
customized for each network. The key components are 
illustrated in the figure, including tools for training quantized 
neural networks (Brevitas), the FINN compiler, and the finn-
hlslib Vivado HLS library of FPGA components for QNNs. 

On a FPGA platform drawing less than 25 W total system power, 
FINN demonstrate up to 12.3 million image classifications per 
second with 0.31 µs latency on the MNIST dataset with 95.8% 
accuracy.



5.1 Implementation - ONNX
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Brevitas Model
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5.2 LowerConvsToMatMul Transformation 
Our starting ONNX model presents Conv
nodes, they have to be replaced using the 
LowerConvsToMatMul transformation. This 
transformation is one of the most relevant 
from the hardware point of view, since it is 
strictly related on how finn-hls library 
performs the convolution. 

When executing LowerConvsToMatMul, FINN 
searches in the model for Conv nodes and 
replaces them with a pair of Im2Col→MatMul 
nodes in case of depthwise convolution.
The input tensor is reshaped in a matrix of 
dimension K2 * C × N.

H

W K2 * C

N = nH * nW 13



5.3 Implementation – RTL Simulation
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RTL Synthesis Main Results

Utilized Total

LUT 28189 504K

LUTRAM 1655 -

FF 15661 461K

DSP 37 1,728

BRAM 17 -

Estimated Throughput 
[images/s] 9585.4 -

Throughput [images/s] 4605.9 -

Clock Frequency [mhz] 185.19 -
0.13 ms to process 1 stacked image 

through the CNN (Simulation) .



5.4 Implementation Results

Implementation Main Results

Throughput [images/s] 1822,02

Clock Frequency [Mhz] 100

copy_input_data_to_device[ms] 0.85

copy_output_data_from_device[ms] 0.25

0.5 ms to process 1 stacked image 
through the CNN (Simulation) .

48 ms to process all the 96 
combinations of stacked image 

through the CNN (Real Time) .

15



6.1 Conclusions

of the CNN of the 
Stack-CNN algorithm.

on Xilinx Zynq UltraScale+ 
MPSoC ZCU104 

of the parameters 
(quantized) during training.

on FPGA board.

Quantization

Fine-Tuning

RTL Simulation

Implementation

Implementation on FPGA of the Stack-CNN 
algorithm for Space Debris tracking.
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6.2 Future Steps

Testing the performances 
of the complete system 

for online detection.

Test inference accuracy 
directly on board.

Increasing the 
performance of the CNN.

Developing the quantized 
online Stacking Module 

inside a custom Brevitas 
module.
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JEM-EUSO project for SD removal
JEM-EUSO is a space-based detector 
that records fluorescence light in UV 
bandù (290 - 430 nm).

JEM-EUSO, looking down at Earth’s 
atmosphere, is also able to detect SD 
through albedo phenomenon.

Light reaches only SD and the detector 
is covered by Earth’s shadow.

The proposal is then building in 
tandem a space-borne pulsed-laser 
system.

T.Ebisuzaki et al. Demonstration designs for the remediation of space debris
from the International Space Station, 2015.



Convolutional Neural Networks
1. Learning rate: is a tuning parameter in an optimization algorithm that 

determines the step size at each iteration while moving toward a 
minimum of a loss function.

2. Loss Function: 𝑀𝑆𝐸 = 1

𝑁
σ𝑖=1
𝑁 𝑦𝑖 − ത𝑦𝑖

2 in classification, it is the penalty 

for an incorrect classification of an example.

3. Convolution: 



Activation Tensors & Weight Tensors

[https://learnopencv.com/understanding-convolutional-neural-networks-cnn/]



Convolution Operation

2D Input Matrix Image 5x5

Convolution Filter

Weights

[https://medium.com/analytics-vidhya/convolution-padding-stride-and-pooling-in-cnn-13dc1f3ada26]



Feature Masks CNN

[https://www.analyticsvidhya.com/blog/2020/11/tutorial-how-to-visualize-feature-maps-directly-from-cnn-layers/]



If the detection could be achieved within a time scale of tens of 
milliseconds an online trigger system could be implemented in a 
CubeSat. 

CubeSat & Requirements

1U CubeSat CP1 (left) 10x10x11cm
3U CubeSat CP10 (right) 10x10x34cm (NASA)

3U Cubesat solar panel

Mass 127 g

Maximum power Up to 8.4 W in LEO per side

Power efficency 29+% (at EOL)

Current < 504 mA

Voltage 16.8 V (for 7 cells)

https://satsearch.co/products/endurosat-3u-cubesat-solar-panel
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