SIMULATION OF LIGHT PROFILES OF METEORS AND ITS APPLICATIONS TO THE JEM-EUSO PROJECT

Candidata: Martina-Francesca Casonato Relatore: Mario Edoardo Bertaina Tutor aziendale: Alberto Cellino Tesi di laurea triennale a.a 2012/2013

Painting of a Leonid shower in the year 1833

What is JEM-EUSO

ISS orbit

MISSION & INSTRUMENT PARAMETERS

Time of launch: year 2017 Duration: 3 years (+2 years) Height of the Orbit: ~ 400 km Latitude & longitude: 51,6° N - 51,6° S (for all longitudes) Period of the Orbit: 90 mins

Field of view: $\pm 30^{\circ}$ Observational aperture on the ground area: ~ circle of 250 km radius Angular resolution: 0.07° Pixel size at ground: 560 m Pixel size: 2.9 mm Number of pixels: ~ 3×10^{5} Event time sampling: 2.5 µs = 1GTU Focal surface area: 4.5 m²

Optics and electronics

Meteor of the Perseids observed from ISS (Aug. 2011)

The Peekskill fireball (Oct. 9, 1992)

- M = absolute magnitude, in the zenith of the observer at a height of 100 km.
- -5 < M < 7 meteor (mass 100 g ÷ 2mg)
- M < 8 bolide or fireball (meteoroid mass 10÷100 kg)
- M < -17 superbolide (meteoroid mass > 1000 kg)

Leonid meteor swarm in 2001 taken by Hivison camera

Meteor shower: the Leonids (from Leo constellation) Different types of lightcurves

From the article of L. Shrbeny' and P. Spurny', *"Precise data on Leonid fireballs from all-sky photographic records"*, Astronomy & Astrophysics, vol. 506, 1445-1454 (2009).

Meteor & Nuclearite simulation

Computation of the flux

Absolute magnitude (M)	U-band flux (erg/s/cm²/A)	photons (s ⁻¹)	photo-electrons (GTU=2.5 µs)⁻¹	mass (g)	collisions in JEM-EUSO FoV
7	6.7 · 10 ⁻¹²	4.3 \cdot 10 7	4	2·10 -3	1/s
5	4.2 · 10 ⁻¹¹	$2.7\cdot$ 10 8	23	10 -2	6/min
0	4.2 · 10 ⁻⁹	$2.7\cdot10$ ¹⁰	2300	1	0.27/orbit
-5	4.2 · 10 ⁻⁷	$2.7\cdot10^{12}$	$2.3\cdot$ 10 5	100	6.3/year

Data for a meteor in the zenith, at a height of **100 km** from the ground (**300 km** from the ISS). The flux of phe (ph) is **on the ISS.**

Absolute magnitude: $M = -2.5 \times \log_{10}[Flux(h=100)] + C$

Apparent magnitude: $m = -2.5 \times \log_{10}(Flux(h)) + C$

For **distance = 100 km** (from the ground) :

m = M = -2.5 log₁₀[Flux(h)/Flux(h=100)]

Leonids Simulations

10000 Physical data on the 1999.2001.2002 and 2006 Leonid fireballs. LEO18 - st. 20 Ondřejov $T_0 = 1^h 32^m 30^s UT$ 8000 V_{in} (km/s) Meteor Μ Intensity (Arbitrary linear units) max No. 6000 **LEO18** 71.30 -11.9 4000 **LEO19** 71.63 -11.8**LEO21** 71.45 -11.5 2000 **LEO27** 71.59 -13.8**LEO50** 71.66 -10.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Time (s) 4.5e+07 **LEO51** 70 -12.9"LEO18.out" using 1:5 4e+07 \mathbf{v}_{in} = initial velocity 3.5e+07 M_{max} = maximum absolute magnitude 3e+07 lux(phe/GTU) Equation of the light profile 2.5e+07 Intensity = function of time: 2e+07 1.5e+07 $l(t) = p0+p1\cdot t+p2\cdot t^2+p3\cdot t^3+...$ 1e+07 polinomy of degree 8 5e+06 0

0

0.2

0.4

0.6

Time(s)

0.8

1

1.2

Table taken from the article of L. Shrbeny' and P. Spurny', Astronomy & Astrophysics, vol. 506, 1445-1454 (2009).

Meteors out of cone of visibility

THE LIGHT TRACK persistence of the signal in the atmosphere

Leonid bolide and trail - 18 Nov. 1999 - 1.43 UT

Four images taken with a 50mm (#1.8) and Kodak PJ-400, 4 minute exposures - Location: S.Martino (VA, Italian Alps) - Copyright 1999 Lorenzo Comolli

Sequence of a 1999 Leonid fireball captured from an observing site in the Italian Alps.

The meteor was brighter than the full moon and left a smoke trail that was visible for more than 20 minutes.

Features of this kind should be observable by the JEM-Euso IR camera.

vol. 506, 1445-1454 (2009).

"stripes", groups of fading points

Now:

Α

	(counts/s)
LEO18	-1.22
LEO27	-4.69
LEO51	-19.52

A= - 20

How to determine a meteor trajectory and velocity from its persistence train in the atmosphere

Divide the output file into groups of stripes

Development of another numerical program

 $y = yiss(t_0) + tan(\phi) \cdot [x - xiss(t_0) - v \cdot t]$

 $x = xiss+v \cdot t+(z-400) \cdot tan(\theta)/\sqrt{1+tan(\phi)^2}$

 $z = 400 - v \cdot t / \{tg[\theta 2] / \sqrt{(1 + tan[\phi 2]^2)} - \{tg[\theta 1] / \sqrt{(1 + tan[\phi 1]^2)}\}$

Find z for each stripes with this formula, – using the first term ("1"), fixed, and changing the others("2")

> Find x,y Vx,Vy,Vz (with their errors)

Results

- Font: light track output file with A = -1 and abs mag = 3.
- Total stripes: **4717**
- There are selected *three samples* from three different stripes of the output file.

N°	x (km)	±σ _× (km)	x expected (km)	y (km)	±σ _y (km)	y expected (km)	z (km)	±σ _z (km)	z expected (km)
1	-1.2	1.5	-0.1	6.2	0.7	6.2	96.7	1.6	97.5
2	-3.5	1.0	-2.1	17.6	0.8	17.5	91.0	2.1	93.0
3	-6.0	0.9	-5.4	28.7	1.2	28.6	86.9	3.6	88.6

Expected value of x, y and z refers to the most brightful point of each stripe.		km/s	±σ _v (km/s)	Expected value (km/s)	v module (km/s)	±σ _ν (km/s)	Expected value (km/s)
	VX	2.1	1.7	5.5	(KIII/5)	_	(
	1.0.7	10 F	1 0	11 0	11.9	3.1	13.8
	vy	10.5	1.0	11.9			
	VZ	-5.2	2.4	-4.2	Expected value of velocity		

is given by the input file.

- Time error = **0.5 ms**
- Angle φ error: given by the propagation formula, where φ = arctan(ypix/xpix)
- $\sigma x p i x$, $\sigma y p i x = \pm 1 p i x e l$
- Angle θ error = 0.075° = 270 arcsec = 1pixel
- The associate errors are all calculated using the propagation formula.

Conclusions

- A simulation of different meteors light profiles as seen from JEM-EUSO has been performed, on the evidence coming from ground based photographic records.
- Starting from ISS measurements of θ & φ angles and taking profit of the persistence of the signal in the atmosphere, it is possible to find position and velocity vectors of a meteor during its passage in the JEM-EUSO field of view.
- A study of the answer in pixels of JEM-EUSO focal detector can be done in future using these data.

Thank you

K. I. T. Star

Criteria to identify Nuclearites in Jem-Euso and differences with meteors

NUCLEAR MATTER

STRANGE MATTER

• **Speed**: meteor up to 70 km/sec, Dark Matter nuclearites ~ 300km/sec (nuclearite max velocity value → 570 km/s meteor max value → 72 km/s)

• **Light profile**: in **meteors** the light starts immediately and then decreases due to the mass ablation; most of the meteors doesn't reach earth.

On the contrary **nuclearites** are very compact objects, the energy loss is similar to the one of an elementary particle.

No mass ablation.

The light emission is constant at $h \le h_{max}$ (very low altitudes).

 $h_{max} = 2.7 \cdot \ln (m / 1.2 \cdot 10^{-5} \text{ g}) \text{ km} (m: 0.1 - 100 \text{ g} \rightarrow h_{max}: 24 - 60 \text{ km})$

 $M = 15.8 - 1.67 \cdot \log_{10} (m / 1 \mu g)$ (m: 0.1 - 100 g \rightarrow M: 7.5 - 2.5)

A nuclearite of mass > 0.1 g should cross the entire earth and **can move upward.** JEM-EUSO could detect also upward going nuclearites.

Nuclearites and meteors comparison

