

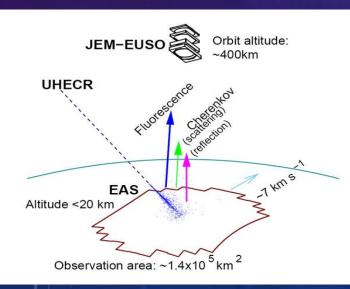
Università degli studi di Torino Corso di Laurea Triennale in Fisica a.a. 2020/2021

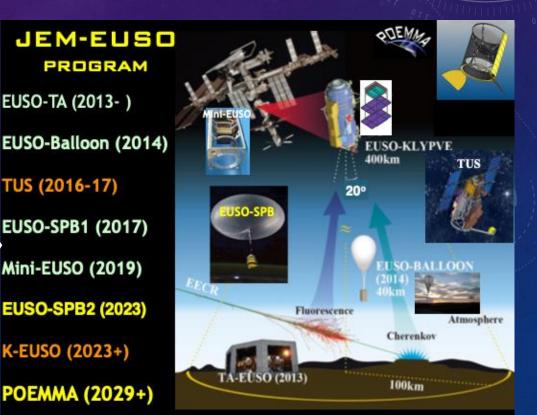
A COMPARISON BETWEEN MINI-EUSO DATA FROM ISS AND TURLAB REPRODUCTION OF JEM-EUSO ORBITS

Canditato: Alex Youssef Relatore: Prof. Mario Edoardo Bertaina Tutor aziendale: Piero Vallania (INAF) Primo co-relatore: Matteo Battisti Secondo co-relatore: Hiroko Miyamoto

SUMMARY

- <u>THE JEM-EUSO PROGRAM</u>
 - JEM-EUSO Mission The Original Concept
- THE MINI-EUSO MISSION
 - The Instrument
- EUSO@TURLAB
 - The Facility
 - Turin City Model Calculations
 - Turin City Model The Making
 - Lightcurves
 - Rotation Period
- MINI-EUSO ON ISS: A Flight Over Europe
 - Session 25 Ocean
 - Session 25 Turin
 - Session 25 Rome
 - Sessions 14 and 25 Desert
- MINI-EUSO @ TURLAB 2018: Engineering Model
 - DATA CORRECTION: The Point Spread Function
 - Corrected Images Comparison
- SUMMARY AND CONCLUSIONS

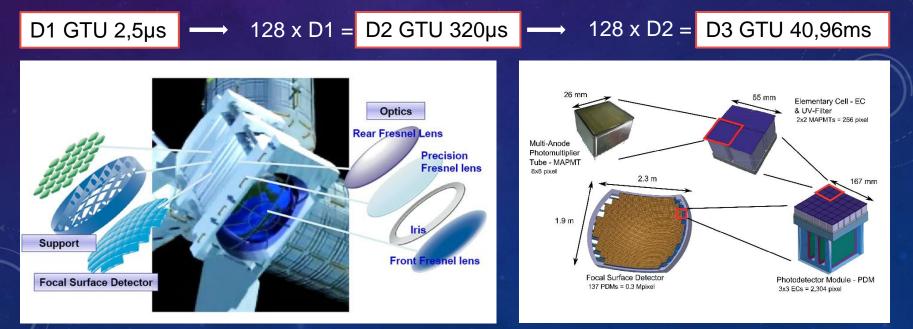

THE JEM-EUSO PROGRAM


Joint Experiment Mission for the Extreme Universe Space Observatory

MAIN GOAL: Observation of the fluorescence tracks produced at (330-400)nm by Extensive Air Showers (EAS) originated by UHECR (Ultra High Energy Cosmic Ray) primaries, using the Earth's atmosphere as detector.

FROM A MISSION TO A PROGRAM:

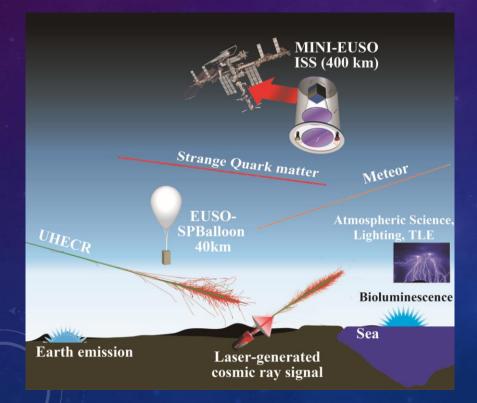
From the concept of a single large UV telescope, the JEM-EUSO program comprehend now many different instruments. They will study the UHECRs from ISS, satellites and from ground.



THE JEM-EUSO MISSION: The Original Concept

MAIN SUB-SYSTEMS: will characterize most of the future missions

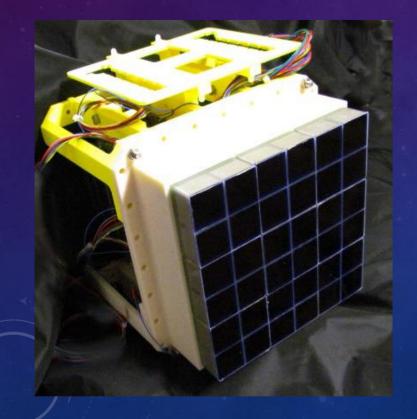
- Optical System: Fresnel lenses-based optical system
- Focal Surface: 137 Photo-Detector Module (PDM)
- Data Acquisition: SPACIROC ASICs array

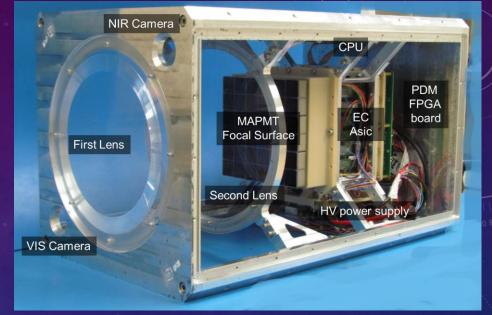

The Data Acquisition System has a time resolution of 2,5µs (D1 GTUs – Gate Time Units). D1 GTUs are integrated at higher levels (D2 and D3):

JEM-EUSO Flight Segment HTV UV photons Ground Support Equipment LIDAR station Ground Based Calibration System LIDAR station Ke Flasher Ke Fla

THE MINI-EUSO MISSION Multiwavelength Imaging New Instrument for the EUSO program

MAIN PURPOSE: Pathfinder mission for EUSO program, study of UHECRs related phenomena. Currently hosted in the nadir facing, UVtransparent window of the Zvezda Russian module on the ISS


OTHER OBJECTIVES:

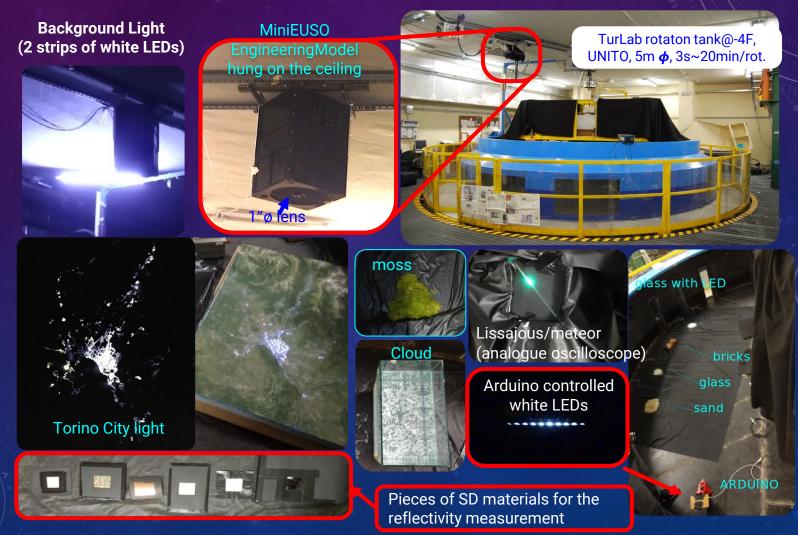

- high-resolution mapping of night-Earth UV emission (300 – 400 nm)
- Meteoroids burning in atmosphere
- TLEs (Transient Luminous Events)
- Bioluminescence sources (algae)
- SQM (Space debris mapping
- Strange Quark Matter) signals

MINI-EUSO: The Instrument

MAIN SUB-SYSTEMS:

- Optics: double Fresnel lenses-based UV optical system for the main detector + RGB camera (400-780)nm + NIR camera (1500-1600)nm
- Focal Surface: 48x48 px PDM (1/137 of JEM-EUSO concept)
- Data Acquisition: SPACIROC3 ASICs

Instrument	Mini-EUSO	JEM-EUSO
Field of View	<u>+</u> 22°	± 30°
Aperture Area	490 cm ²	\geq 2,5 m ²
Operational Wavelength	300 - 400 nm	300 - 400 nm
Pixel Size	< 3 mm	< 3 mm
Number of Pixel	2304	$pprox 3 imes 10^5$
Number of Pixel Resolution Angle	2304 0, 8°	pprox 3 $ imes$ 10 ⁵ 0, 075°
Resolution Angle	0 , 8°	0, 075°


EUSO@TURLAB Physics Department - University of Turin

LIKE THIS TIME-LAPSE OF LIGHTNING

EUSO@TURLAB: The Facility

MAIN PURPOSES:

- Reproducing different luminosity variations to test the trigger logic
- simulating different terrain and atmospheric conditions as seen from orbit
- evaluating the performances of the EUSO instruments
- comparing the data collected in the TurLab and from the ISS

EUSO@TURLAB: Turin City Model - Calculations

To reproduce the Turin Metropolitan area in a scale compatible with the dimension of our tank, and in a range compatible with the FoV of the instruments in orbit, we choose to start form a standard A0 paper format $(1189 \times 841) mm$:

Printed Area: $(83 \times 58 \times 3)$ km 540mm 50mm Final Dimensions : $(1180 \times 830 \times 40) mm$ ۰ ~55 mm 410 mm Conversion Scale: 1:70000 • Black Carton 500 mm Tube C.so Francia 11,75 km \rightarrow 168mm ٠ **PixelFS** Ceiling-Real Pixel Dist-~3280 mm bottom Linear FoV <u>Focal Length</u> 2280 mm distance Real C. Francia MAPMT 27 mm Scaled Pixel PxFoV (pixel) focal (3,38 mm)FoV Scaled C.Francia 3280 mm surface **JEM-EUSO** Mini-EUSO $\sim 6110 m/px$ $\sim 560 m/px$ **Pixel FoV from** (on Earth) (on Earth) 400km altitude **Real Pixel** Focal Lens-Bottom Converted TurLab/JEM TurLab/Mini FoV **Pixel FoV** -EUSO -EUSO Length Distance Scale Factor Scale Factor JEM@ 500 mm 2280 mm 15,4 mm $1077 \ m/px$ ÷ 5,67 × 1,92 TurLab (on model) (on model) Mini@ 300 mm 2480 mm 1951m/px27.9 mm × 3,48 ÷ 3, 13 (on model) TurLab (on model)

780 mm

Focal Surface

2000 mm from tank center

Turin City

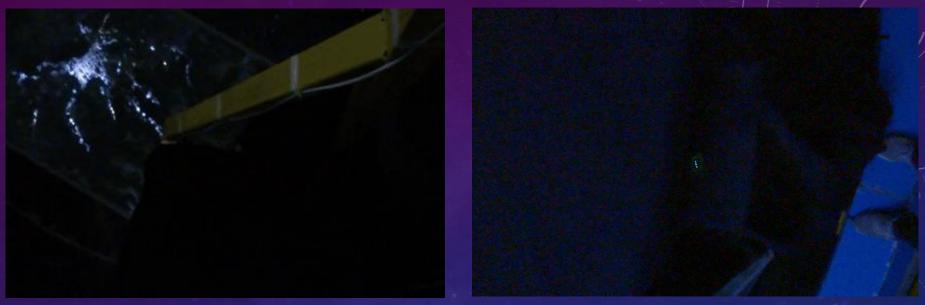
Tank Bottom

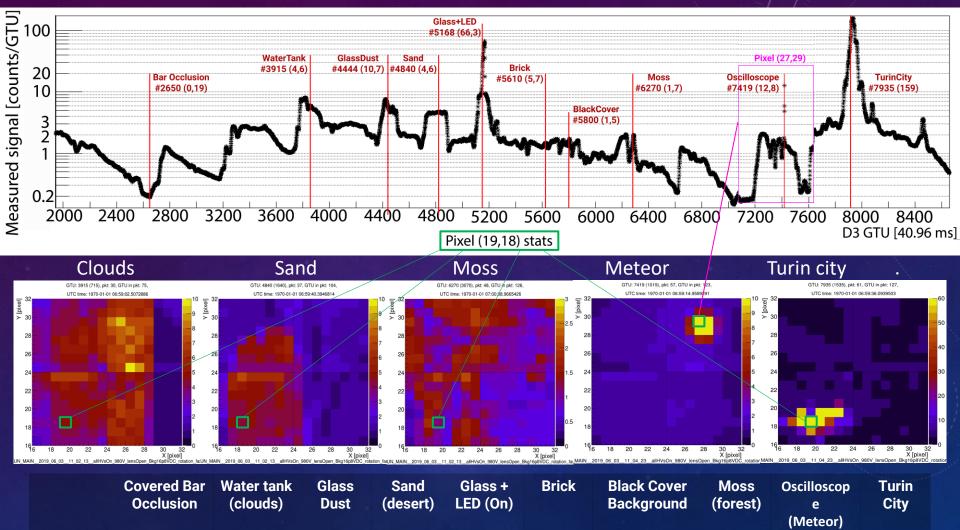
40mm

(EC unit)

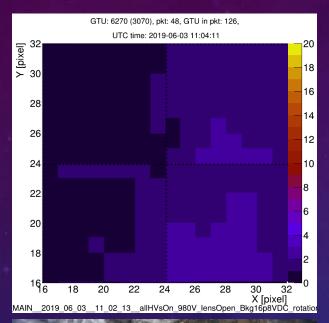
'1" lens

Yellow Bar


EUSO@TURLAB: Turin City Model – The Making



EUSO@TURLAB: Visual Results



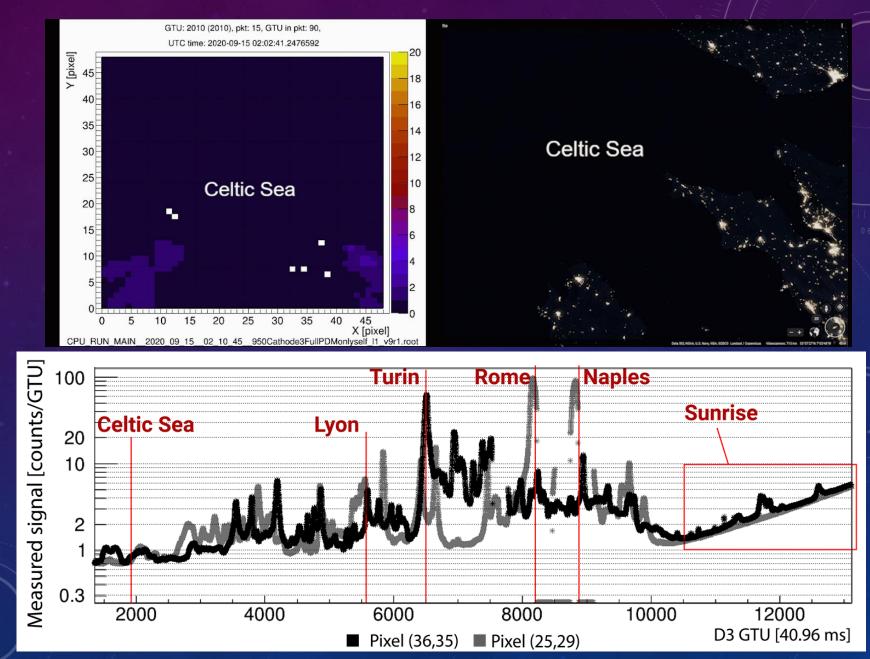
EUSO@TURLAB: Lightcurves

									(Meteor)		
GTU #	2650	3915	4430	4840	5167	5610	5800	6280	7419	7935	
Central Px Count	0,20	4,6	7,2	4,6	67,4	5,7	1,5	1,6	12,8	159	
Diagonal 8x8 Avg	0,20	4,0	6,5	4,4	28,7	2,5	1,2	1,3	5,7	14,8	

EUSO@TURLAB: Rotation Period

Dynamical Scale Factor between the configurations at TurLab and onboard the ISS, using the length of C.so Francia as a reference (from 11,75 km to 16,8 cm). ISS Orbits Inclination = 51,65° Relative Ground Velocity = 7,3 km/s

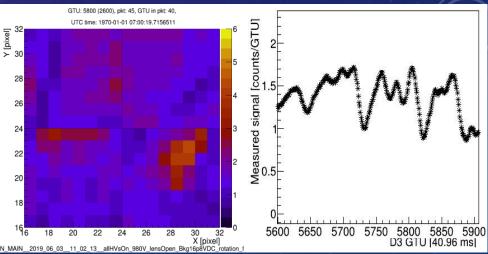
 $T = \frac{2\pi \ 2000 \ mm \ 11,75 \ km}{7,3 \ km \ s^{-1} \ 168 \ mm} = 120,3s$


Comparing how fast the pixel FoV changes in Mini-EUSO and at TurLab, we have two different speeds:

n the TurLab:
$$V_{px_TLab} = \frac{7.3 \ km \ s^{-1}}{1.98 \ km \ px^{-1}} = 3.69 \ px \ s^{-1}$$

On the ISS: $V_{px_ISS} = \frac{7.3 \ km \ s^{-1}}{6.11 \ km \ px^{-1}} = 1.20 \ px \ s^{-1}$ DYNAMICAL SCALE FACTOR: $V_{pxTLab}/V_{pxISS} \sim 3$ (TurLab is 3 time faster)

Ideal tank rotation period: $\sim 6 min$


MINI-EUSO ON ISS: A Flight Over Europe

MINI-EUSO ON ISS: Session 25 - Ocean

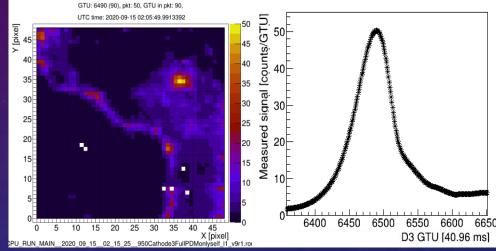
TurLab	Mini-EUSO on ISS (48x48 px)	
Black Cover	GTU: 800 (800), pkt: 6, GTU in pkt: 32, UTC time: 2020-09-15 02:01:51.6860549 45 45	
1,5		
		11
-7	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	
	X [pixel] D3 GTU [40.96 m	IS

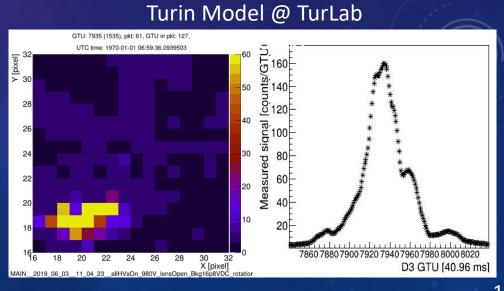
F	Px Count	1,0	1,5	Y [pixe
N	Noon Phase	8%		
		Longitude		
2	-24	-15.033	-7	
				PU
	i dage -			lixel
	pment purposes only	For development purposes only	For development purposes o	ilexid bonly
	pment purposes only	For development purposes only	For development purposes o	only Jiveil
	pment purposes only	For development purposes only	For development purposes of	ponly Haxid
	pment purposes only	For development purposes only	For development purposes of	ulaxid Y
	pment purposes only	For development purposes only	For development purposes of	pnly
641	pment purposes only	For development purposes only	For development purposes of	
641				

Celtic Sea

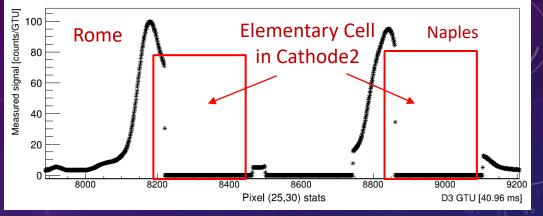
Ocean

Position

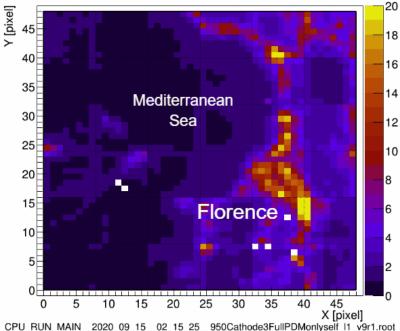

Environment


MINI-EUSO ON ISS: Session 25 - Turin

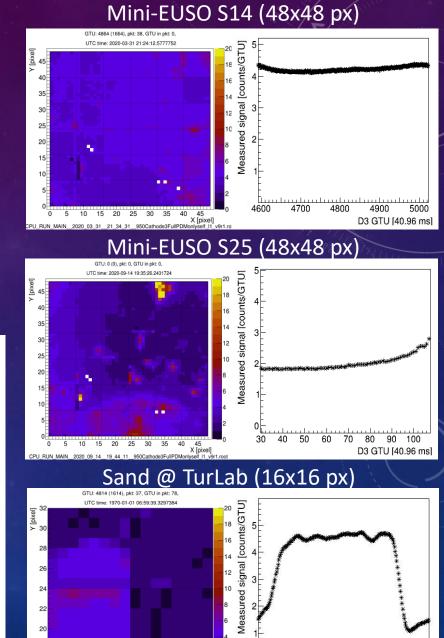
Position	Italy - Turin	TurLab
Environment	Urban Area	Turin Model
Px Count	66	159
Moon Phase	8%	


Mini-EUSO on ISS (48x48 px)

MINI-EUSO ON ISS: Session 25 - Rome


Position	Italy - Rome	TurLab
Environment	Urban Area	Turin Model
Px Count	100	159
Moon Phase	8%	-

Mini-EUSO on ISS (48x48 px)



GTU: 7066 (666), pkt: 55, GTU in pkt: 26, UTC time: 2020-09-15 02:06:13.5842943

MINI-EUSO ON ISS: Sessions 14 And 25 - Desert

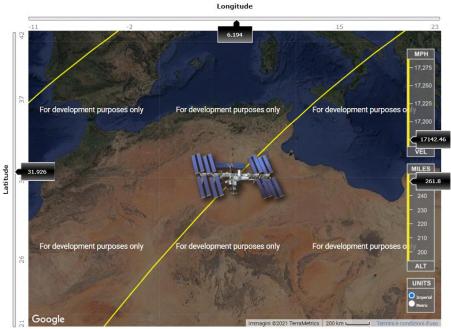
Position	Algeria S25	Algeria S14	TurLab
Environment	Desert	Desert	Sand
Px Count	1,5	4,2	4,5
Moon Phase	9%	44%	

4750

4700

30 32 X [pixel]

¹⁶ 16

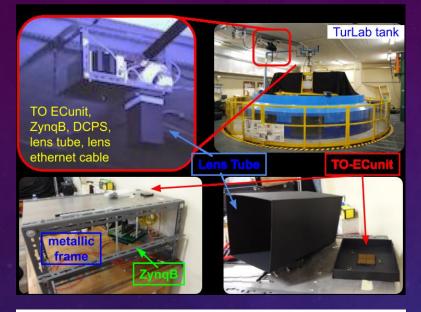

18

20 22

24 26 28

MAIN_2019_06_03_11_02_13_allHVsOn_980V_lensOpen_Bkg16p8VDC_rotation

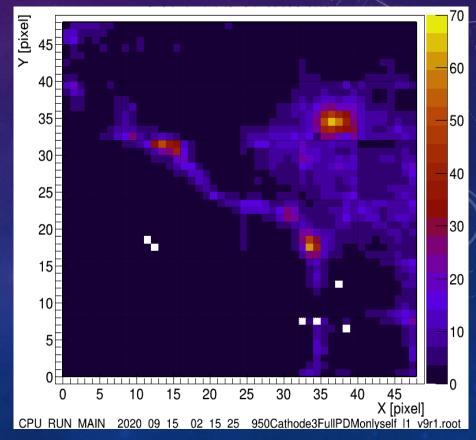
4800



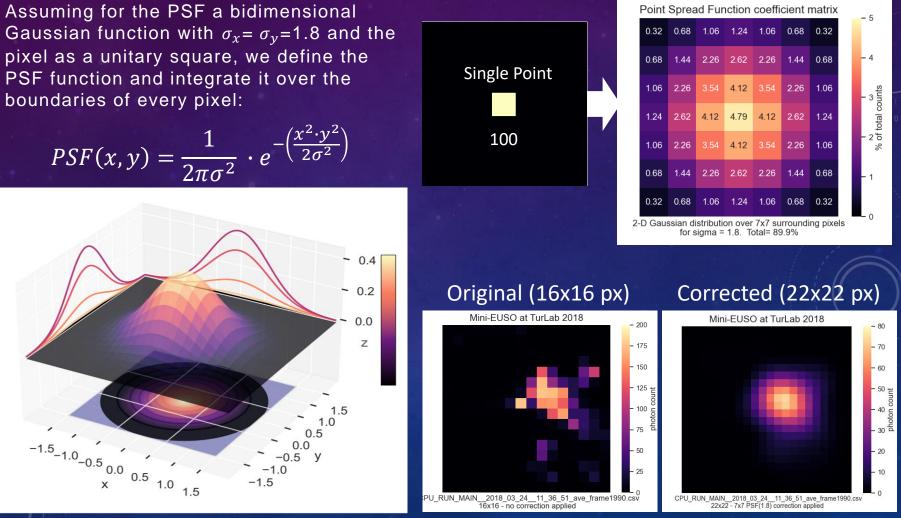
4900

D3 GTU [40.96 ms]

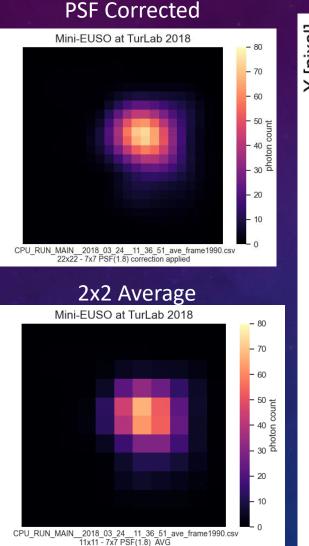
4850


MINI-EUSO@TURLAB 2018: Turin City Model

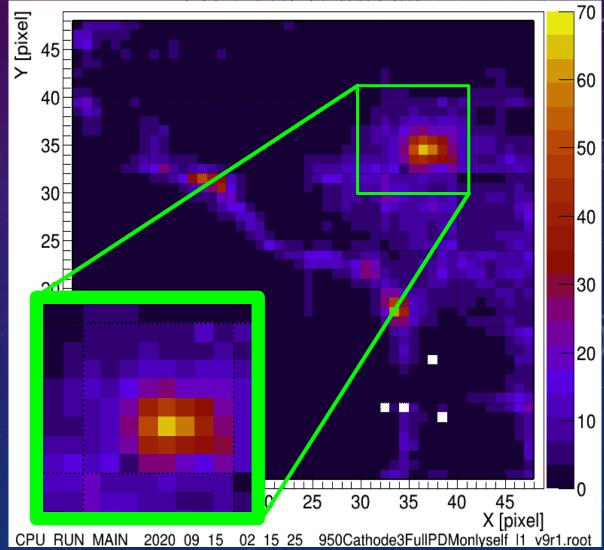
Mini-EUSO at TurLab 2018 - 200 - 175 - 150 - 125 time - 100 up - 75 d - 50 - 25 - CPU_RUN_MAIN_2018_03_24_11_36_51_ave_frame1990.csv Corrections to consider:


- Point Spread Function
- FoV scale factor of 3

Mini-EUSO on ISS – Session 25 - North Italy



DATA CORRECTION: The Point Spread Function


The data collected from each pixels need to be corrected for the Point Spread Function (PSF), which indicates how much of the particles are effectively collected by the pixel itself, and how much is instead collected by the surrounding pixels.

MINI-EUSO@TURLAB 2018: Corrected Image Comparison

Mini-EUSO on ISS – Session 25 - North Italy

SUMMARY AND CONCLUSIONS

WHAT HAS BEEN DONE:

- We have reproduced in laboratory a wide range of luminosity and terrain conditions
- We have built an illuminated scaled reproduction of the province of Turin and its lights
- We compared the data recently taken by Mini-EUSO on the ISS with those obtained several years before at TurLab, founding a correspondence between them, and thus proving the predictive value of the experiments
- We successfully corrected and compared the images obtained using the Turin model with those taken from orbit, finding correspondence in extension, shape and counts.

WHAT CAN BE DONE:

- Repairing and updating the Turin city model to better represent its real shape and luminosity
- Repeating the TurLab simulations with a configuration specifically scaled for the reproduction of Mini-EUSO characteristics
- Analyzing and comparing the most recent data sent from the mission, which are more consistent and with less portion of the PDM in Cathode2

