Università degli studi di Torino

Marissa Seidel

The all-particle energy spectrum measured by KASCADE-Grande in the energy range 10¹⁶ -10¹⁸ eV using the EPOS hadronic interaction model

Tutor universitarioMario BertainaTutor aziendaleCarlo Morello

Cosmic rays origin

Source: supernovae explosions

Cosmic rays origin

'Accelerator': galaxis

Source: supernovae explosions

Cosmic rays origin

Source: supernovae explosions

Air Shower

Cosmic rays: general aspects

Atomic nuclei H, ..., Fe Flux $\propto E^{-\gamma}$

'Knee' : spectral ind\u00e9x
 changes
from 2.7 to 3.1 at energies
at a few 10¹⁵ eV

KASCADE-Grande: energy range 10¹⁶ -10¹⁸ eV

All-particle spectrum measured by different experiments

Cosmic rays: the knee

- The experiments KASCADE and EAS-TOP observe a knee generated by the ,light' component of the cosmic rays at 3-4 · 10¹⁵ eV
- In the energy range of KASCADE-Grande a knee of the 'heavy' component is expected

$$R = \frac{E}{Ze}$$

$$E_{knee}^{H} = R_{\lim it} Ze \approx 3 - 4 \cdot 10^{15} eV$$

$$E_{knee}^{Fe} = 26 \cdot R_{\lim it} = 26 \cdot E_{knee}^{H} \approx 7 - 10 \cdot 10^{16} eV$$

Interaction between primary and atmosphere: Extensive Air Shower

Possible measurements of EAS:

Lateral distribution Arrival time Number of detected particles: N_{ch} , N_{μ} , N_{e}

With these parameters it is possibly to reconstruct:

arrival direction of the primary Energy Chemical composition

Extensive Air Showers

Longitudinal distribution of EAS

Hydrogen primaries produce more e- and less muons at ground level

Longitudinal distribution of EAS

Hydrogen primaries produce more e- and less muons at ground level N_{ch} =N_e+N_u≈N_e

Simulation of 2-dim spectrum

- Fe and protons have a different $N_{ch}(N_e)$ and N_{μ} sizes
- Protons produce more e- and Fe more muons
- All other primaries have a N_{ch} (N_e) and N_µ sizes between the 2 circles

Experiment KArlsruhe Shower Core and Array DEtector -Grande

KASCADE:

array of 252 detector over 200x200m² Detected particles: µ,e

Grande:

Array of 37 detectors over 700x700m² Detected particles:µ+e (charged particles)

Lateral distribution of Nch and Nµ

$$\rho_{\mu}(r) = N_{\mu} \cdot f_{\mu}(r) = N_{\mu} \cdot \frac{0.28}{r_0^2} \left(\frac{r}{r_0}\right)^{p_1} \left(1 + \frac{r}{r_0}\right)^{p_2} \left(1 + \left(\frac{r}{10 \cdot r_0}\right)^2\right)^{p_3}$$
$$\rho_{ch}(r) = N_{ch} \cdot f_{ch}(r) = N_{ch} \cdot C(s) \left(\frac{r}{r_0}\right)^{s-\alpha} \left(1 + \frac{r}{r_0}\right)^{s-\beta}$$

The hadronic interaction model EPOS

EPOS is a parton model, with many binary parton-parton interactions, each one creating a parton ladder.

T. Pierog and K. Werner, Nucl. Phys. B (Proc. Suppl.) 196(2009)

Comparison of the interaction models

Johannes Knapp, Ooty, 2010

Longitudinal distibutions for 2 different energies

EAS studies: montecarlo simulation guide for the experimental data

Reconstruction of the simulated and experimental data using EPOS

EPOS simulation: searching for the calibration functions for H and Fe

log₁₀ (E/GeV

Data divided in 5 angular bins \rightarrow 5 calibration functions Bin 1: 0<θ<16.7° Bin 2:16.7°<θ<24.0° Bin 3:24.0°<θ<29.9° Bin 4:29.9°<θ<35.1° Bin 5:35.1°<θ<40.0° $\log_{10}(N_{ch}/N_{\mu})_{n,Fe} = c_{p,Fe} \cdot \log_{10}(N_{ch}) + d_{p,Fe}$

$$k = \frac{\log_{10} (N_{ch}/N_{\mu}) - \log_{10} (N_{ch}/N_{\mu})_{p}}{\log_{10} (N_{ch}/N_{\mu})_{Fe} - \log_{10} (N_{ch}/N_{\mu})_{p}}$$

 $\log_{10}(E[GeV]) = [a_H + (a_{Fe} - a_H) \cdot k] \cdot \log_{10}(N_{ch}) + b_H + (b_{Fe} - b_H) \cdot k$

Simu

EPOS simulation: searching for the calibration functions for H and Fe

EPOS simulation: selection for the calibration functions

20

Difference of the energy event-by-event

Mean and root mean square for all primaries, H and Fe

H fluctuates more than Fe

Slight offset to La compensate the slope in the power law

log₁₀(E/GeV)

Reconstruction of the all-particle spectrum using the calibration for EPOS

Differential reconstructed flux multiplied by E^{2.5} and divided in angular bins to see finer structures

The same behavior for all bins, bigger angles have higher flux

More elevated energies: more fluctuations because of less statistics

Exp data

Updated all-particle spectrum analysed by different hadronic interaction models

Exp data

Comparison of the different interaction models

View at the interesting energy range 10¹⁶ -10¹⁸ eV

Choice of calibration parameters is insignificant in comparison of choice of interaction model

Structures in all 3 models →structures present in data, not a reason of the interaction model

Chemical composition analysis using parameter k

Evolution of k for every primary

- Black lines to divide primaries in
- mass groups as an event-byevent

reconstruction is not possible

Data tends to overlap Helium $k = \frac{\log_{10}(N_{ch}/N_{\mu}) - \log_{10}(N_{ch}/N_{\mu})_{p}}{\log_{10}(N_{ch}/N_{\mu})_{Fe} - \log_{10}(N_{ch}/N_{\mu})_{p}}$

Exp data

Spectrum reconstruction of light, medium and heavy component with EPOS

Flux divided in mass groups

Knee for the heavy and medium component evident

The light component has no changing of spectral index

The rigidity model

$$E_{knee}^{H} = R_{\lim it} Ze \approx 3 - 4 \cdot 10^{15} eV$$

Rigidity model foresees bend down at 7-10.10¹⁶ eV

$$E_{knee}^{Fe} = 26 \cdot R_{limit} = 26 \cdot E_{knee}^{H} \approx 7 - 10 \cdot 10^{16} eV$$

Conclusions

- Complete analysis of KASCADE-Grande data using hadronic interaction model EPOS
- Good accordance with experiments at lower and higher energy
- Differences using different interaction models: EPOS gives a lower flux than QGSJet II and SIBYLL, but observed structures are similar →origin has to be physical
- Differences between simulations with different calibration functions are small compared to different interaction models
- Observation of the heavier component knee at circa 10¹⁷ eV using the parameter k, no knee for light component
- Results support rigidity model