

UNIVERSITÀ DEGLI STUDI DI TORINO Scuola di Scienze della Natura Corso di Laurea Triennale in Fisica

The attenuation length of muons in high-energy air showers measured by IceTop

Relatore: Mario Bertaina Tutor aziendali: Andreas Haungs and Donghwa Kang Laureando: *Rebecca Cerri* Anno accademico: 2018/2019

07/04/2020

Rebecca Cerri

ERASMUS TRAINEESHIP

I had the opportunity to complete an Erasmus Traineeship of 2 months at the Karlsruhe Institute of Technology (KIT). During this period I worked on my thesis

project.

COSMIC RAYS

Cosmic rays are *nuclei of various chemical elements*, produced in astrophysical environments like supernovae, that propagate through galactic and inter-galactic space.

The iron nuclei and protons are the heaviest and lightest elements of the most abundant components of the cosmic radiation.

Before the knee we can have direct measurements with balloons or satellites. After the knee we can only have indirect measurements from EAS (Extensive Air Shower).

IceTop, the experiment on which this project is based, is used to measure the energy spectrum of cosmic ray primaries in the range between 1 PeV and 1 EeV, therefore from the knee to close to the ankle.

Rebecca Cerri

COSMIC RAYS

When a primary particle arrives in the atmosphere, it interacts with it creating an **Extensive Air Shower (EAS)**.

The shower is composed of a hadronic component in the central part and an electromagnetic component and a muonic component (and neutrinos) on the lateral part.

The shower has to be interpreted:

CORSIKA is a Monte Carlo code for detailed simulation of extensive air showers initiated by high energy cosmic ray particles. A hadronic interaction model (EPOS-LHC, SIBYLL 2.3 etc...) is used to describe the interaction of cosmic rays with the atmosphere.

The IceCube Neutrino Observatory (IceCube) is a neutrino observatory constructed in Antarctica. **IceTop is the surface component of the IceCube detector** and it is used to measure the energy spectrum of cosmic ray primaries in the *range between 1.58 PeV and 1.26 EeV.*

Therefore IceTop is an air shower array consisting of **81 stations.**

Each station consists of two ice Cherenkov tanks separated by ten meters. **Each tank** contains two Digital Optical Modules (DOMs) with a 10 inch photomultiplier tube (PMT) and electronics for signal processing and readout.

A **trigger** occurs when the signal in one of the DOMs in a tank has passed the discriminator threshold.

The total charge collected at the PMT's anode, after digitization and baseline subtraction, constitutes the tank's signal.

The tanks register signals ranging from 0.2 to 1000 Vertical Equivalent Muons (VEM).

SLC signals occur at large lateral distances, where the triggering probability is smallest.

Electrons and muons may give both types of signal.

AIM OF THE PROJECT

It is important to validate the hadronic interaction models (EPOS-LHC, SIBYLL 2.3 etc...).

Many research groups have already done this. However at KIT students have the opportunity to do it again.

Marta Bianciotto, a physics student, has worked on the hadronic interaction model SIBYLL 2.3. In this project the model EPOS-LHC* was studied.

Therefore this dissertation will show the procedure and steps in this project and will compare the results of the two models.

*EPOS is a sophisticated multiple scattering approach based on partons and Pomerons (parton ladders), with /special emphasis on high parton densities. EPOS-LHC is the latest version of this model fine tuned on the current results obtained at LHC.

07/04/2020

AIM OF THE PROJECT

The particles that are produced in the shower are later reabsorbed by the atmosphere.

For example the image represents the development in the atmosphere of EAS produced by protons or iron nuclei at $E=10^{15}$ eV.

Therefore the number of these particles changes while the shower is developing in the atmosphere.

The attenuation length measures the rate of absorption of the particles.

To validate the model EPOS-LHC the attenuation length of muons, $\alpha_{\mu}(\mathbf{r})$, has been calculated.

This parameter is expressed in g/cm^2 , which means that this parameter is the quantity of grams of atmosphere contained in a cm^2 that reduces the flow of muons of 1/e.

AIM OF THE PROJECT

The relation between the muon density on the ground and the zenith angle of the primary particle can be expressed by:

$$\rho_{\mu}(r,\theta) = \rho_{\mu}^{0}(r)e^{-X_{0}\sec\theta/\alpha_{\mu}(r)}$$

Where:

- X_0 is the depth of the atmosphere expressed in g/cm² and for IceTop $X_0 = 692$ g/ cm²
- $\rho_{u,0}(r)$ is a normalization factor
- $\alpha_{\mu}(r)$ is the attenuation length of muons.

 $\rho_{\mu,0}(r)$ and $\alpha_{\mu}(r)$ are two parameters of the fit and we need $\alpha_{\mu}(r)$.

Simulation data for proton and iron obtained using the model EPOS-LHC were provided.

1) The attenuation length of muons for proton and iron, α , has been obtained from the simulation data.

2) The attenuation length of muons, α , has been obtained from the experimental data.

3) These values have been compared.

DEFINE DIFFERENT RANGE

In the showers many parameters and values depend on the energy, on the zenith angle and on the radial distance from the core.

Log10(Energy/GeV)

Energy range	Lower end	Upper end
1	6	6.5
2	6.5	7
3	7	7.5
4	7.5	8

Zenith angle

Angular range	Lower end [°]	Upper end [°]
1	0.0	17.51
2	17.51	25.19
3	25.19	31.41
4	31.41	37.0

Radial distance range Lower end Upper end or ring [m] [m]

Radial distance from the core

The parameter S125 was used as an <u>estimator</u> of the energy of the experimental data.

S125 is a parameter of the shower and it represents the distance from the core where the muon density is approximately the same for every type of particle.

Therefore:

1) The simulation data for proton and iron have been taken

- 2) The relation between the energy and the parameter S125 has been studied
- 3) The relation obtained was applied to the experimental data

PROTON AND IRON, Energy 6-8, Angular range 1

Karlsruher Institut für Technol

EXP. DATA – THE ENERGY ESTIMATION

y = p0 + p1*x

	p0	δp0	р1	δp1	χ2	N. Dof	Prob.
Angular range 1	-6.5	0.1	1.08	0.01	22.19	40	0.99
Angular range 2	-6.5	0.1	1.08	0.01	26.45	40	0.95
Angular range 3	-6.90	0.17	1.12	0.02	14.96	30	0.99
Angular range 4	-7.22	0.16	1.16	0.02	21.81	30	0.86

The values of the Log10(S125/m) corresponding to the Log10(Energy/GeV)=7 and the Log10(Energy/GeV)=7.5.

Log10(S125/m)	Log10(S125/m)
1.06	1.60
1.06	1.60
0.94	1.50
0.90	1.48

2-DIMESIONAL HISTOGRAMS (Radial distance from the core – Signal)

As explained earlier in this dissertation, *"signal"* means the charge signal produced by electrons or muons in the detector.

In these histograms the two types of signal have been included: <u>HLC and SLC</u>.

Energy range 3, Angular range 1:

PROTON

EXP. DATA

1-DIMESIONAL HISTOGRAMS (Signal)

Seven 1-dimensional histograms have been found from each 2-dimensional histogram with energy range 3.

EXP DATA: Energy range 3, Angular range 1, each Radial distance range

The method to separate the signal produced by muons from the signal produced by electrons has been decided.

It has been calculated for each shower:

- The sum of all signals produced by muons above 0.7 VEM in each ring.
- The number of the tanks *in each ring*.

From these values the **muon density on the ground** *in each ring* has been obtained:

Muon density =	Sum of all signals produced by muons above 0.7 VEM
	Number of tanks * Area of one tank

1-DIMESIONAL HISTOGRAM (Muon density)

X-axis: Muon density [VEM/m²], Y-axis: Number of events

IRON, Energy range 3, Radial distance range 2

$$\rho_{\mu}(\mathbf{r},\theta) = \rho_{\mu}^{0}(\mathbf{r})e^{-X_{0}\sec\theta/\alpha_{\mu}(\mathbf{r})}$$

Y coordinates are the <u>mean</u> of these muon density histograms.

Y errors are the deviation standard of the mean of these histograms.

X coordinates are the secant of the mean of these zenith angle histograms.

PROTON

Range [m]	Ρ ⁰ _μ (r) [VEM/m ²]	δΡ ⁰ _μ (r) [VEM/m ²]	α _μ (r) [g/cm^2]	δα _μ (r) [g/cm²2]	χ2	N. of Dof.	Prob.
320-420	1.45	0.35	738	175	4.44	2	0.11
620-720	1.08	0.54	417	127	2.46	2	0.29

 $\chi^{\rm 2}$ test passed for both fits

EXP. DATA

Range [m]	Ρ ⁰ _μ (r) [VEM/m ²]	δΡ ⁰ _μ (r) [VEM/m ²]	α _μ (r) [g/cm^2]	δα _μ (r) [g/cm [^] 2]	χ2	N. of Dof.	Prob.
320-420	1.79	0.26	999	191	1.26	2	0.53
620-720	0.95	0.27	729	196	1.68	2	0.43

 χ^2 test passed for both fits

IRON MEAN MEDIAN Energy range 3, Radial distance range 4 Energy range 3, Radial distance range 4 MEDIAN muon density [VEM/m²] MEAN muon density [VEM/m²] 0.24 0.35 0.23 0.22 0.34 0.21 0.33 0.2 0.19 0.32 0.18 0.31 0.17 0.16 0.3 1.22 1.02 1.04 1.06 1.08 1.1 1.12 1.16 1.18 1.2 1.22 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.14 sec(MEAN zenith angle/°) sec(MEAN zenith angle/°)

	Range [m]	Ρ ⁰ _μ (r) [VEM/m [^] 2]	δΡ ⁰ _μ (r) [VEM/m [^] 2]	α _μ (r) [g/cm²2]	δα _μ (r) [g/cm²2]	χ2	N. of Dof.	Prob.
MEAN	520-620	0.50	0.07	1817	104	2.61	2	0.27
MEDIAN	520-620	0.63	0.35	659	371	1.69	2	0.43

 $\chi^{\rm 2}$ test passed for both fits

PROTON MEDIAN

Range [m]	Ρ ⁰ _μ (r) [VEM/m ²]	δΡ ⁰ _μ (r) [VEM/m ²]	α _μ (r) [g/cm^2]	δα _μ (r) [g/cm²2]	χ2	N. of Dof.	Prob.
320-420	0.69	0.22	1351	688	0.35	2	0.84
620-720	2.00	1.35	206	7	0.21	2	0.90

 χ^2 test passed for both fits

EXP. DATA MEDIAN

Range [m]	Ρ ⁰ _μ (r) [VEM/m ²]	δΡ ⁰ _μ (r) [VEM/m ²]	α _μ (r) [g/cm^2]	δα _μ (r) [g/cm²2]	χ2	N. of Dof.	Prob.
320-420	1.68	0.33	785	155	4.29	2	0.12
620-720	2.0	1.5	279	78	1.34	2	0.51

 χ^2 test passed for both fits

RADIAL DISTANCE RANGE 2 (320 m – 420 m)

	α _μ (r) [g/cm²]	δα _μ (r) [g/cm²]	χ2	N. of Dof.	Prob.
Experimental data	785	155	4.29	2	0.12
Iron	618	133	0.51	2	0.77
Proton	1351	688	0.35	2	0.84

The model EPOS-LHC describes the experimental data. However, it must be taken into account that the error bar of proton is very big.

RADIAL DISTANCE RANGE 5 (620 m – 720 m)

	α _μ (r) [g/cm²]	δα _µ (r) [g/cm²]	χ2	N. of Dof.	Prob.
Experimental data	279	78	1.34	2	0.51
Iron	228	6	1.37	2	0.50
Proton	206	7	0.21	2	0.90

The model EPOS-LHC describes the experimental data. However, it must be taken into account the different width of the error bars.

Comparison SIBYLL 2.3 and EPOS LHC (MEAN)

It is very useful to compare the results obtained with EPOS-LHC with the results obtained with another hadronic interaction model. In fact, in this way it can be understood if the limits of this model depend on the model itself or on the cut of the charge signal produced by muons.

Marta Bianciotto, a former student, has worked on the model SIBYLL 2.3.

With proper attention the $\alpha_{\mu}(r)$ values obtained from the simulation data of EPOS-LHC, the simulation data of SIBYLL 2.3 and the experimental data have been compared:

- Marta Bianciotto did the fits using only the MEAN of muon density. Therefore, also for EPOS-LHC, the $\alpha_{\mu}(r)$ values obtained by using the MEAN of muon density in the fits, has been taken.
- The experimental data analysed in this project have been taken.
 This because the number of events of the experimental data taken in this project is bigger than the number of events of the experimental data taken in Marta's work.

Karlsruher Institut für Technolo

RADIAL DISTANCE RANGE 2 (320 m – 420 m)

	α _μ (r) [g/cm²]	δα _μ (r) [g/cm²]	χ2	N. of Dof.
SIBYLL 2.3 <mark>Fe</mark>	1554	173	5.54	2
SIBYLL 2.3 H	1305	103	2.15	2
Exp. Data	999	191	1.26	2
EPOS LHC Fe	819	190	0.91	2
EPOS LHC H	738	175	4.44	2

EPOS-LHC: The model describes the experimental data.

SIBYLL 2.3:

Gauss's Test

Proton and Exp. Data	Z=1.41
Iron and Exp. Data	Z=2.15

Karlsruher Institut für Technologie

Karlsruher Institut für Technologie

RADIAL DISTANCE RANGE 5 (620 m - 720 m)

	α _μ (r) [g/cm²]	δα _μ (r) [g/cm²]	χ2	N. of Dof.
SIBYLL 2.3 <mark>Fe</mark>	1016	733	1.59	2
SIBYLL 2.3 H	684	232	0.54	2
Exp. Data	729	196	1.68	2
EPOS LHC Fe	375	91	3.41	2
EPOS LHC H	417	127	2.46	2

EPOS-LHC:

The model describes the experimental data. Gauss's Test Iron and Exp. Data: Z=1.64

SIBYLL 2.3:

The model describes the experimental data. However, it must be taken into account that the error bar of iron is very big.

The aim of the project was to validate the hadronic interaction model EPOS-LHC using the attenuation length of muons.

 $\alpha_{u}(r)$ has been obtained for 5 radial distance range for proton, iron and experimental data.

These values have been obtained using the MEAN and the MEDIAN of the 1-dimensional histograms of muon density.

It has been noted that the results using the MEDIAN are better, but there are still some problems.

To understand if these problems are due to the model EPOS-LHC or to the cut of the signal produced by muons, the $\alpha_{\mu}(r)$ values obtained from EPOS-LHC and SIBYLL 2.3 have been compared.

It has become clear that *the limits found in this project are most probably due to the cut of the signal, independent from the model*. This is because almost all of the problems are found in both models.

The question that remains is to understand the value of the signal where the cut is applied.

THANK YOU!

EXP. DATA – THE ENERGY ESTIMATION

PROTON and **IRON**

EXP. DATA – THE ENERGY ESTIMATION

PROTON and **IRON**

y = p0	+	р1*х
--------	---	------

	p0	δp0	p1	δp1	χ2	N. Dof	Prob.
Angular range 1	-6.5	0.1	1.08	0.01	22.19	40	0.99
Angular range 2	-6.5	0.1	1.08	0.01	26.45	40	0.95
Angular range 3	-6.90	0.17	1.12	0.02	14.96	30	0.99
Angular range 4	-7.22	0.16	1.16	0.02	21.81	30	0.86

The values of Log10(s125/m) corresponding to the Log10(Energy/GeV)=7 and the Log10(Energy/GeV)=7.5.

Log10(S125/m)	Log10(S125/m)
1.06	1.60
1.06	1.60
0.94	1.50
0.90	1.48

X-axis: Log10(r/m), Y-axis: Signal/VEM Rebecca Cerri

X-axis: Log10(r/m), Y-axis: Signal/VEM Rebecca Cerri

2-DIMENSIONAL HISTOGRAMS (Radial distance from the core – Signal)

EXP. DATA

Energy range 3, Angular range 1

Energy range 3, Angular range 3

Energy range 3, Angular range 2

Energy range 3, Angular range 4

X-axis: Log10(r/m), Y-axis: Signal/VEM

Rebecca Cerri

1-DIMENSIONAL HISTOGRAMS (Signal)

PROTON

Energy range 3, Angular range 1, each Radial distance range: Energy range 3, Angular range 2, each Radial distance range:

X-axis: Signal [VEM], Y-axis: Number of events Rebecca Cerri

07/04/2020

Energy range 3, Angular range 3, each Radial distance range: Energy range 3, Angular range 4, each Radial distance range:

1-DIMENSIONAL HISTOGRAMS (Signal)

IRON

Energy range 3, Angular range 1, each Radial distance range: Energy range 3, Angular range 2, each Radial distance range:

Energy range 3, Angular range 3, each Radial distance range: Energy range 3, Angular range 4, each Radial distance range:

X-axis: Signal [VEM], Y-axis: Number of events Rebecca Cerri

1-DIMENSIONAL HISTOGRAMS (Signal)

EXP. DATA

Energy range 3, Angular range 1, each Radial distance range: Energy range 3, Angular range 2, each Radial distance range:

Energy range 3, Angular range 3, each Radial distance range: Energy range 3, Angular range 4, each Radial distance range:

X-axis: Signal [VEM], Y-axis: Number of events Rebecca Cerri

1-DIMENSIONAL HISTOGRAMS (Muon density)

PROTON

Energy range 3, Angular range 1, each Radial distance range: Energy range 3, Angular range 2, each Radial distance range:

Energy range 3, Angular range 3, each Radial distance range: Energy range 3, Angular range 4, each Radial distance range:

X-axis: Muon density [VEM/m²], Y-axis: Number of events Rebecca Cerri

07/04/2020

1-DIMENSIONAL HISTOGRAMS (Muon density)

IRON

Energy range 3, Angular range 1, each Radial distance range: Energy range 3, Angular range 2, each Radial distance range:

Energy range 3, Angular range 3, each Radial distance range: Energy range 3, Angular range 4, each Radial distance range:

X-axis: Muon density [VEM/m²], Y-axis: Number of events Rebecca Cerri

07/04/2020

1-DIMENSIONAL HISTOGRAMS (Muon density)

Energy range 3, Angular range 1, each Radial distance range: Energy range 3, Angular range 2, each Radial distance range:

Energy range 3, Angular range 3, each Radial distance range: Energy range 3, Angular range 4, each Radial distance range:

X-axis: Muon density [VEM/m²], Y-axis: Number of events Rebecca Cerri

07/04/2020

1-DIMENSIONAL HISTOGRAMS (Zenith angle)

Energy range 3, Angular range 2

Energy range 3, Angular range 4

1-DIMENSIONAL HISTOGRAMS (Zenith angle)

IRON

Energy range 3, Angular range 3

Energy range 3, Angular range 2

Energy range 3, Angular range 4

1-DIMENSIONAL HISTOGRAMS (Zenith angle)

Energy range 3, Angular range 3

Energy range 3, Angular range 2

Energy range 3, Angular range 4

1.12 1.14 1.16 1.18 1.2 1.22 sec(MEAN zenith angle/°)

1.06 1.08 1.1

1 04

1.12 1.14 1.16 1.18 1.2 1.22 sec(MEAN zenith angle/°)

1.06 1.08

1.1

1 04

PROTON

Range [m]	Ρ ⁰ _μ (r) [VEM/m ²]	δΡ ⁰ _μ (r) [VEM/m ²]	α _μ (r) [g/cm^2]	δα _μ (r) [g/cm^2]	χ2	N. of Dof.	Prob.
320-420	1.45	0.35	738	175	4.44	2	0.11
420-520	0.80	0.29	917	397	5.53	2	0.06
520-620	0.69	0.26	939	445	3.64	2	0.16
620-720	1.08	0.54	417	127	2.46	2	0.29
720-820	1.39	0.58	528	174	6.29	2	0.04

IRON

IRON

Range [m]	Ρ ⁰ _μ (r) [VEM/m [^] 2]	δΡ ^₀ _μ (r) [VEM/m [^] 2]	α _μ (r) [g/cm^2]	δα _μ (r) [g/cm²2]	χ2	N. of Dof.	Prob.
320-420	1.45	0.31	819	190	0.91	2	0.64
420-520	0.50	0.08	2745	196	24.92	2	0.000004
520-620	0.50	0.07	1817	104	2.61	2	0.27
620-720	1.39	0.59	375	91	3.41	2	0.18
720-820	1.42	0.57	557	187	1.13	2	0.57

1.1

1.04 1.06 1.08

1.02

1.12 1.14 1.16 1.18 1.2 1.22 sec(MEAN zenith angle/°)

1.02

1.04 1.06 1.08

1.1

sec(MEAN zenith angle/°)

Range [m]	Ρ ⁰ _μ (r) [VEM/m ²]	δΡ ^₀ _μ (r) [VEM/m ²]	α _μ (r) [g/cm^2]	δα _μ (r) [g/cm^2]	χ2	N. of Dof.	Prob.
320-420	1.79	0.26	999	191	1.26	2	0.53
420-520	0.65	0.11	13271	39033	2.02	2	0.36
520-620	0.62	0.13	4555	5662	1.09	2	0.58
620-720	0.95	0.27	729	196	1.68	2	0.43
720-820	1.79	0.47	559	107	0.03	2	0.99

PROTON

PROTON

Range [m]	Ρ ⁰ _μ (r) [VEM/m ²]	δΡ ^₀ _μ (r) [VEM/m ²]	α _μ (r) [g/cm^2]	δα _μ (r) [g/cm^2]	χ2	N. of Dof.	Prob.
320-420	0.69	0.22	1351	688	0.35	2	0.84
420-520	0.61	0.31	738	405	3.60	2	0.17
520-620	0.65	1.12	554	302	0.76	2	0.68
620-720	2.00	1.35	206	7	0.21	2	0.90
720-820	2.0	1.5	196	13	1.75	2	0.42

IRON

IRON

Range [m]	Ρ ⁰ _μ (r) [VEM/m ²]	δΡ ^₀ _μ (r) [VEM/m [^] 2]	α _μ (r) [g/cm^2]	δα _μ (r) [g/cm²2]	χ2	N. of Dof.	Prob.
320-420	1.6	0.4	618	133	0.51	2	0.77
420-520	0.50	0.13	1224	55	7.68	2	0.02
520-620	0.63	0.35	659	371	1.69	2	0.43
620-720	2.00	1.43	228	6	1.37	2	0.50
720-820	2.00	1.14	252	9	6.32	2	0.04

EXP. DATA

Range [m]	Ρ ⁰ _μ (r) [VEM/m ²]	δΡ ^₀ _μ (r) [VEM/m ²]	α _μ (r) [g/cm^2]	δα _μ (r) [g/cm^2]	χ2	N. of Dof.	Prob.
320-420	1.68	0.33	785	155	4.29	2	0.12
420-520	0.58	0.15	2494	2030	2.32	2	0.31
520-620	0.51	0.17	1753	1317	1.18	2	0.55
620-720	2.0	1.5	279	78	1.34	2	0.51
720-820	507	656	90	14	2.41	2	0.30

RADIAL DISTANCE RANGE 1 (220 m - 320 m)

The fits have not been done due to the electron contamination.

RADIAL DISTANCE RANGE 3 (420 m – 520 m)

	α _ρ (r) [g/cm²]	δα _ρ (r) [g/cm²]	χ2	N. of Dof.	Prob.
Experimental data	2494	2030	2.32	2	0.31
Iron	1224	55	7.68	2	0.02
Proton	738	405	3.60	2	0.17

Even if it is not possible to compare these $\alpha_{\rho}(r)$ values, due to the fact that the iron fit didn't pass the χ^2 test, it can been concluded that the model EPOS-LHC does not describe the experimental data, because the points in the iron fit do not follow the correct trade.

Moreover, despite the fact that the fit for proton and for the experimental data passed the χ^2 test, there are still problems.

RADIAL DISTANCE RANGE 4 (520 m – 620 m)

	α _ρ (r) [g/cm²]	δα _ρ (r) [g/cm²]	χ2	N. of Dof.	Prob.
Experimental data	1753	1317	1.18	2	0.55
Iron	659	371	1.69	2	0.43
Proton	554	302	0.76	2	0.68

The model EPOS-LHC describes the experimental data. However, it must be taken into account that the error bar of the experimantal data is very big.

RADIAL DISTANCE RANGE 6 (720 m – 820 m)

	α _ρ (r) [g/cm²]	δα _ρ (r) [g/cm²]	χ2	N. of Dof.	Prob.
Experimental data	90	14	2.41	2	0.30
Iron	252	9	6.32	2	0.04
Proton	196	13	1.75	2	0.42

Even if it is not possible to compare these $\alpha_{\rho}(r)$ values, due to the fact that the iron fit didn't pass the χ^2 test, it can been concluded that the model EPOS-LHC does not describe the experimental data, because the points in the iron fit do not follow the correct trade.

RADIAL DISTANCE RANGE 7 (820 m - 920 m)

The fits have not been done because the muon density histograms are empty.