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Abstract: The observation of the atmosphere is a crucial task for the JEM-EUSO mission, and a module for the
atmospheric monitoring is included in the design of the whole system. In this paper the retrieval of cloud coverage in
the field of view of the telescope is addressed considering both radiative methods commonly used in the meteorological
field and methods of image analysis, with the aim of studying the feasibility of these approaches to the data that the JEM-
EUSO infra red camera will provide. The complementarity of the two approaches will be further investigated, together
with a different set of techniques, to contribute to achieve the best cloud estimation in JEM-EUSO.
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1 Introduction

The strength of the fluorescent light and the Cherenkov sig-
nal received from EAS, as well as the reconstruction effi-
ciency and errors, depend on the transparency of the atmo-
sphere, the cloud coverage and the height of the cloud top.
A crucial task for the success of the JEM-EUSO mission
[1] is to observe the conditions of the atmosphere in the
field of view of the telescope. To this end a dedicated at-
mospheric monitoring (AM) system [2] is being designed.
The system includes an infrared camera, that will be used
to estimate cloudiness and height maps in the field of view
of the telescope.

This paper reports on current work to identify optimal
cloud detection algorithms from infrared data, that will be
implemented into the JEM-EUSO observing system for ac-
curate estimations of cosmic-ray energy. To this end here
we revise the performance of different methods for cloud
detection: threshold algorithms, radiative, and methods ex-
ploiting image analysis techniques. The experiments are
run on scenes under different conditions, retrieved by oper-
ational atmospheric sensors similar to the JEM-EUSO at-
mospheric monitoring system.

2 Radiative methods

Geostationary (i.e. GOES, MSG) and LEO satellites (i..e.
Terra/Aqua, HIRS) provide multi-spectral observations
with good spatial and temporal resolution. CALIPSO
mission combines an active lidar instrument with passive
infrared and visible images to probe the vertical struc-
ture and properties of thin clouds and aerosols over the
globe. The cloud mask (CMa) allows the identification
of cloud free areas where other products (total or layer
precipitable water, stability analysis imagery, snow/ice
cover delineation) may be computed. The main aim of
the CMa is therefore to delineate all cloud-free pixels in
a satellite scene with a high confidence. In addition, the
typical CMa product provides information on the presence
of snow/sea ice, dust clouds and volcanic plumes. SEVIRI
is a multi-band sensors operating on MSG satellite series
by EUMETSAT [12]: starting from SERIVI radiance
observations, it has been developed an algorithm for
identifying cloud presence and cloud contamination.
The algorithm is based on several and differential band
threshold tests, using only infra red bands as JEM-EUSO
work during nighttime: some difference band tests are
specific for thin cirrus detection. Thresholds depend on
pixel background (land, water and coast) and on Numerical
Weather Prediction (NWP) model temperature at surface
and at standard levels. Starting from four categories
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Figure 1: Single IR band cloud detection respect all IR
channel CMa

of tests a probability of clear sky is defined as follow:

cloud sky probability =3
√

Pir · Pthin · Pdiff−ir

Where Pir test is the probability that for a given
band/threshold the pixel is cloudy or cloud contaminated;
Pthin andPdiff−ir have the same meaning but for band
differences and thin cirrus specific tests. As JEM-EUSO
will work with at least with a two band infrared camera, the
tests performed on SEVIRI have been limited to 10.8 and
12.0µm bands. Single infrared algorithm can detect only
thick and extended clouds, with better performance during
summer and over warm sea due to high thermal contrast
[10].

Figure 1 shows undetected clouds when only 10.8µm IR
band is used: major problems occur near coastal border-
line, with thin cirrus and at border of cloud desk, where
pixels and not fulfilled. Well-known split window channels
are essential to detect thin cirrus or broken clouds and to
estimate Earth’s surface and cloud top temperatures. The
12.0µm band is more sensitive for high thin cirrus but it is
not easy to recognise through visual inspection, while it is
highlighted by band difference [11].

Figure 2 shows the difference between Brightness Tem-
perature (BT) at 10.8µm and 12.0µm at 12:45 on 2th
sept 2010: BT differences greater than 3◦K distinguish be-
tween semi-transparent thin clouds and thick ones.

Figure 2: Band difference from SEVIRI for 10.8µm and
12.0µm at 12:45 on 2th sept 2010

3 Image analysis methods

The methods discussed in this Section exploit the image
content of the infrared data, not considering its physical
meaning. That is that the content of a pixel is regarded as a
colour information only, and not as related to the tempera-
ture.

In this Section we consider two different methods: a super-
vised image segmentation algorithm, and a second method
that follows a geometric approach.

3.1 Feature based method

In this method the classification of the cloudy pixels is per-
formed using a state of the art machine learning tool: a
Support Vector Machine (SVM) [6], for which we chose
a Gaussian kernel. In particular we use a public available
implementation of the SVM [5].

The classification using SVM is a supervised method, and
it needs a training set of data. This means that a relatively
large number of pixels must be manually labelled. A simple
graphical interface has been created to facilitate this task.

The classification is not performed in the gray-level space,
but each image pixel is mapped into a higher dimensional
space, that is usually called feature space. In our case the
feature vector associated to each pixel (i,j) is

fi,j = (v, µ, σ,Dx, Dy, h1, h2, h3, h4, h5, h6, h7, h8)

wherev is the gray-level of pixel (i,j),µ andσ are mean
and standard deviation respectively in a5 × 5 neighbour-
hood centred in the pixel,Dx and Dy are the gradient
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components, andh1 to h8 are the entities of the eight-bin
histogram of the5× 5 neighbourhood in the image.

The classifier has been tested on more than 2000 images
from different sensors. The training set includes610 points
belonging to bothcloud and not-cloudclasses, manually
selected from the first1000 frames of the image set. From
the remainder of the sequence we selected further609
points that have been used as test set for evaluating the per-
formance of the classifier. As it can be seen from the ROC
curve shown in Figure 3 the performances are particularly
good, since the test set is temporally close to the training
set. We are planning to use more data for a better evalua-
tion.

Figure 3: ROC curve for the SVM classifier.

3.2 Stereo based method

In this section the possibility of retrieving maps of cloudi-
ness from maps of heights is presented supposing that
stereo acquisition was enabled by the use of the infra red
camera. Using stereo methods, the depth of the imaged
points can be recovered from two, or more, images, in this
way, in presence of clouds, the cloud-top height (CTH) can
be recovered [8, 7, 4]. Stereo could be achieved in JEM-
EUSO exploiting the ISS movement. While the ISS flies
along its orbit, the IR camera acquires an image of the FoV
at every fixed time interval.

Exploiting this information, and the fact that the images
can be geo-located, we can mark as clouds all those pixels
for which the recovered height is higher than the altitude of
the corresponding ground.

We analyse the feasibility of this method studying the the-
oretical reconstruction error for the depth, as a large error
in reconstruction may lead, especially for lower clouds, to
mis-classification.

Figure 4: Plot of the CTH estimate error against the dis-
parity error and the true CTH. ISS station altitude at 430
Km.

The depthZ of a point can be obtained by triangulation as

Ẑ =
b

d̂x

whereb is the baseline of the stereo system (the distance
covered by the ISS between the two views), andd̂x is the
estimated disparity [9]. Ifdx andZ are the true disparity
and the true depth respectively we have that

d̂x = dx + δx

and

Z =
b

dx

We can write the depth errorδZ as a function ofδx by
Taylor expansion as

δZ =
b

d2x
δx =

Z2

b
δx

which shows that for a fixed baselineb andδx then the error
in the depth measurement rises as the square of distance
from the camera. Therefore we need a large baselineb to
get a good depth resolution, but also we can expect a poor
depth resolution for distant objects.

The error function is plotted in Figure 4. For this simulation
we used the specs for the infrared camera given in Table
1, the altitude of the sensor fixed at 430 Km, and a time
interval between the two images of 32 sec, which ensures a
50% overlap.

From the analysis of the results of the simulations we can
conclude that we have an accuracy within 500 meters with
a disparity error of 0.5 pixels, that can be achieved for most
pixels with a good matching strategy. With higher disparity
error, say 1-2 pixels, we have an error in the depth estima-
tion that is within 2 Km.
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FoV IFoV Pixel Number of Focal Pixel
resolution of pixels length pitch

60◦ 0.1◦ 640× 480 15 mm 20µm
ISSh=350 Km ≃ 0.58 Km
ISSh=430 Km ≃ 0.72 Km

Table 1: Specification for the IR camera used for this experiment

4 Conclusions

Radiative and image methods for cloud detection and cloud
height estimation have been preliminary considered as can-
didates for JEM-EUSO atmospheric monitoring system.
While performance of radiative methods depend on IR
camera thermal resolution and available bands - especially
when the scene is thin cirrus contaminated - the image
methods described in this contribution depend on spatial
angular resolution of the sensors, and on the quality of
the features or on the quality of the matching. Both ra-
diative and image methods need to be deeper investigated
and moreover other well known techniques and features in
image analysis will be investigated. Radiative and image
approaches can be considered as complementary, an their
integration to best achieve cloud coverage estimation for
JEM-EUSO will be considered.
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