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Introduction

Although the LHC experiments at CERN – ALICE, ATLAS, CMS and LHCb – are
widely known as a physical tool that will hopefully provide a better explanation
of interactions of complex and dynamically evolving systems of finite size, thus
extending the theory of elementary particles and their fundamental interactions
(the Standard Model), what is less evident is the ancillary technology that has
been developed in order to make this possible.

Among all other technologies, computing plays a fundamental role in LHC
experiments: simulating, storing and analyzing data requires both hardware and
software infrastructures that are under constant and heavy development. LHC
experiments cannot simply rely on existing “stable” and commercialized com-
puting infrastructures, because they constitute a completely new use case in the
computing world: this is the reason why physicists write most of the software they
need on their own, and why these infrastructures are to be considered “leading-
edge technologies”, and may even constitute, in the near future, the bases for a
change in the way computers are used by “ordinary” people, as it happened for
the World Wide Web[7, 6], born to satisfy the need to share documents within
the HEP community.

The main large-scale computing infrastructure introduced by the LHC exper-
iments is the Grid[13], a distributed computing infrastructure designed in order
to allow equal access to data and computing power by every physicist in every
part of the world. The only inconvenients from the technical point of view are
that the Grid is not interactive, and the physicist should wait a random time in
order for its tasks to be executed, making it not usable for tasks that need, for in-
stance, to be repeated several times with different parameters in order to choose
the better ones: this is the reason why a solution like PROOF[5] was developed,
and particularly well integrated with the ALICE experiment’s software.

Interactive analysis is complementary to the Grid and does not represent an
alternative to it: the two models do have to coexist and share resources because
the costs for a dedicated interactive facility could seldom be afforded. This is
the reason why efforts were made in order to efficiently share resources between
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batch and interactive tasks, mainly by running daemons as ordinary batch jobs
that enable interactivity on demand on the Grid[16, 17].

This thesis is about the development, implementation and testing of a working
prototype of a PROOF facility in Torino’s Tier-2 centre that shares computing
resources with the Grid dynamically (i.e. resources can be assigned or cut without
any service interruption) through the use of virtual machines – a method that
moves the problem of sharing resources from the Grid level to the machine level.
We call our facility the Virtual Analysis Facility, and we’ll discuss the advantages
and disadvantages of this approach, by showing with the aid of benchmarks that
virtualizing a high-performance and high-throughput computing infrastructure is
nowadays feasible.

v v v

In Chapter 1 the ALICE experiment is described both from the physical and from
the computational point of view, in order to show which are the reasons why
interactive analysis is essential in ALICE (and in other LHC experiments too), and
what is the status of the computing model at present.

Chapter 2 describes the feasibility tests run to show that virtualization of HEP
tasks through Xen is feasible, even in a configuration with dynamically-assigned
resources that are changed while jobs are running.

Once demonstrated the feasibility, a prototype was developed, whose configu-
ration and implementation are described in detail in Chapter 3. Finally, some
tests on the working VAF prototype were done in order to test performance and
different storage models with real-world ALICE jobs.

Lastly, in Chapter 4 some use cases of PROOF concerning the ALICE experiment
are presented by exploiting the VAF with different analysis tasks, and in partic-
ular a CPU-intensive heavy flavour vertexing of the D+ → K−π+π+ open charm
decay.



Chapter 1

Overview of the ALICE

Experiment

1.1 The Physics of the ALICE Experiment

The ALICE experiment is one of the four experiments at the LHC at CERN. LHC
is the largest particle accelerator in the world with a circumference of ∼27 km,
and it’s also the one with the highest center-of-mass energy, with 14 TeV for pp
collisions. All the four experiments will acquire data during pp runs, but ALICE
is the only one specifically designed for heavy ion collisions; ALICE does then
provide two specific physics programs, which we are going to describe.

1.1.1 Heavy-ion collisions

The focus of heavy-ion physics is to study and understand how collective phe-
nomena and macroscopic properties, involving many degrees of freedom, emerge
from the microscopic laws of elementary particle physics. Specifically, heavy-ion
physics addresses these questions in the sector of strong interactions by studying
nuclear matter under conditions of extreme density and temperature.

The nucleon-nucleon center of mass energy for collisions of the heaviest ions
at the LHC (

p
s = 5.5 TeV) will exceed that available at RHIC by a factor of ∼ 30,

opening up a new physics domain. Heavy-ion collisions at the LHC access not
only a quantitatively different regime of much higher energy density, but also a
qualitatively new regime, mainly because of the following reasons.

• A novel range of Bjorken-x values where strong nuclear gluon shadowing
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is foreseen, can be accessed. The initial density of these low-x gluon is
expected to be close to saturation.

• Hard processes are produced at sufficiently high rates for detailed measure-
ments.

• Weakly interacting hard probes become accessible, thus providing informa-
tion about nuclear parton distributions at very high Q2.

• Parton dynamics dominate the fireball expansion.

All these features will allow an accurate study of the phase transition in the
hot and dense hadronic matter environment.

Figure 1.1: The QCD phase diagram.

The most striking case of a collective bulk of phenomenon predicted by the
Standard Model is the occurrence of phase transitions in quantum fields at char-
acteristic energy densities. The generic form of the QCD phase diagram is shown
in Figure 1.1. Lattice calculations of QCD predicts that at a critical temperature of
Tc ' 170 MeV, corresponding to an energy density of εc ' 1 GeV/ f m3, nuclear
matter undergoes a phase transition to a deconfined state of quarks and gluons.
In addition, at high temperature T and vanishing chemical potential µB (quan-
tity related to baryon number density), chiral symmetry is approximately restored
and quark masses are reduced from their large effective values in hadronic matter
to their small bare ones.

The basic mechanism for deconfinement in dense matter is the Debye screen-
ing of the color charge. When the screening radius rD becomes less than the
binding radius rh of the quark system (hadron), the confining force can no longer
hold the quarks together and hence deconfinement sets in.
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The phase transition can be well described by QCD thermodynamics, and in
particular by finite temperature lattice calculations. However, the transition from
hadronic matter to quark gluon plasma can be illustrated by simple and intuitive
arguments, based on the “MIT bag model”. This model describes the confined
state of matter as an ideal gas of non-interacting massless pions, with essentially
three degrees of freedom. On the contrary, even a two flavor QGP (composed by
massless u and d quarks only), has 16 gluonic and 12 quark degrees of freedom.
In the passage from a confined to a deconfined state, the energy density, which is
proportional to the degrees of freedom, undergoes a sudden enhancement (latent
heat of deconfinement). The behavior is shown in Figure 1.2, obtained with
lattice calculations.

Figure 1.2: Temperature dependence of the energy density ε over T 4 in QCD with two

and three degenerate quark flavors as well as with two light and a heavier (strange)

quark. The arrows on the right-side ordinates show the value of the Stefan-Boltzmann

limit for an ideal quark-gluon gas.

At present the only way to achieve the energy densities necessary for the QGP
formation is through heavy ion collisions. The process that leads from the initial
collision to hadronization and freeze-out, is described in Figure 1.3. The main
steps follow.

• Pre-equilibrium (τ < 1 fm/c). The initial partons scatter among each
other giving rise to an abundant production of quarks and gluons.

• QGP (τ' 10 fm/c). The quark gluon gas evolves into thermal equilibrium:
the QGP is formed and starts expanding.

• Mixed phase. The QGP, while expanding, starts converting into a hadron
gas.
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Figure 1.3: Expected evolution of a nuclear collision.

• Hadronization (τ ' 20 fm/c). As far as the system expands, its tempera-
ture decreases until quarks and gluons are again confined in hadrons.

• Freeze-out. Hadrons decouple from the gas, thus becoming free.

The very short lasting time of QGP (only few 10−23 s), together with the in-
terdiction to detect free quarks, do not allow to measure the transition directly.
Nevertheless, information are indirectly provided by series of “probes”, specifi-
cally thought to test different aspects of the medium. In the following, a short
overview of such signals will be presented.

1.1.2 Experimental signatures of QGP

Phase transitions show critical behaviors, and the general way to probe such be-
haviors consists in finding the transition point and determine how the system and
its observables change from one side to the other. In the case of complex phe-
nomena, such as the QGP formation, different observables can be used in order to
investigate different aspects of the same system, in many phases of its evolution.

1.1.2.1 Probes of the equation of state

The basic idea behind this class of probes is the identification of modifications
in the dependence of energy density (ε), pressure (P) and entropy density (s) of
superdense hadronic matter on temperature T and baryochemical potential µB.
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A rapid rise in the ratios ε/T4 or s/T4 is, indeed, an evidence of a first-order
phase transition.

The observables related to such quantities, obtainable through an analysis of
the particle spectra, are the average transverse momentum 〈pT 〉 and the charged
particle multiplicity per rapidity unit dN/d y or transverse energy per rapidity
unit at mid-rapidities dET/d y . In particular, a first-order transition should mani-
fest itself through a saturation of 〈pT 〉 during the mixed phase.

Particle spectra can provide information about another class of phenomena
related to the equation of state: the flow, meaning a collective motion of particles
superimposed to the thermal one. The flow is directly related to the pressure
gradient, and can quantify the effective equation of state of the matter.

1.1.2.2 Signatures of chiral symmetry restoration

One of the most important probes of the chiral symmetry restoration comes from
the study of the light vector meson resonances, ρ,ω andφ Such particles, created
in the hot hadronic phase, can provide direct access to in-medium modifications.
The ρ meson, in particular, plays a key role since its e+e− decay width (through
which resonances are main ly detected) is a factor of ∼ 10 larger than the ω,
and ∼ 5× of φ. In addition, the ρ has a well-defined partner under SU(2) chiral
transformations, the a1(1260).

The approach toward restoration of chiral symmetry at temperature Tc re-
quires the spectral distributions in the corresponding vector and axial channel to
become degenerate. How this degeneracy occurs is one of the crucial questions
related to the chiral phase transition.

The possibilities range from both the ρ and a1 masses dropping to (almost)
zero, the so-called Brown-Rho scaling conjecture, to a complete melting of the re-
sonance structures, due to the intense rescattering in the hot and dense hadronic
environment, or scenarios with rather stable resonance structures.

1.1.2.3 Soft probes of deconfinement: strangeness enhancement

In pp collisions the production of particles containing strange quarks is strongly
suppressed, as compared to the production of hadrons with u and d quarks. The
suppression, probably due to the higher mass of the ss̄ pair, increases with the
strangeness content of the particles.

QGP formation in nucleus-nucleus (AA) collisions leads to a different scenario.
In this case the strange hadron yield derives from two independent reaction steps
following each other in time:

1. in a deconfined QGP, strange quark pairs (ss̄) can be copiously produced
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through gluon-gluon fusion, while in hadronic gas ss̄ pairs have to be pro-
duced via pairs of strange hadrons with higher production thresholds;

2. the initial s and s̄ survive the process of fireball expansion, thus resulting,
at hadronization, in an unusually high yield of strange and multi-strange
baryon and anti-baryon abundance.

The process is represented in Figure 1.4.

Figure 1.4: Illustration of the two steps mechanism of strange hadron formation from

QGP.

In the ensuing hadronization, quark recombination leads to emergence of
particles such as Ξ(ssq) and Ω̄(s̄s̄s̄), which otherwise could only very rarely be
produced[24], as well as to a global increase of the strange particles production.

The described enhancement as a function of the centrality of collision has
been already observed[11] in experiments such as NA57 at SPS, as it is clearly
shown in Figure 1.5.

It is trivial to stress the importance of measuring strange production even in
pA and pp collisions, as the enhancement can be noticed only in comparison with
such data.

1.1.2.4 Hard and electromagnetic probes of deconfinement

In order to be sensitive to the onset of deconfinement, any probe must satisfy
some requirements, and in particular they must:
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Figure 1.5: Centrality dependence of hyperon enhancements at 158 A GeV/c.

• be hard enough to resolve sub-hadronic scales;

• be able to distinguish confinement and deconfinement;

• be present in the early stage of the evolution;

• retain the information throughout the subsequent evolution.

The last point requires that probes should not be in thermal equilibrium with
later evolution stages, since this would lead to a loss of memory of the previous
stages.

So far, two types of probes satisfying these conditions fully or in part have
been considered.

• External probes are produced essentially by primary collisions, before the
existence of any medium. Their observed behavior can indicate whether
the subsequent medium was deconfined or not. The most important ob-
servables are the production of quarkonium states and the energy loss or
attenuation of hard jets.

• Internal probes are produced by the quark-gluon plasma itself. Since they
must leave the medium without being affected by its subsequent states,
they should undergo only weak or electromagnetic interactions after their
formation. Thus the main candidates are thermal dileptons and photons.
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Quarkonium suppression was suggested as a signal of deconfinement[19]
long ago. If a heavy quark bound state (QQ̄) is placed into a hot medium of
deconfined quarks and gluons, color screening will dissolve the binding, so that
the Q and Q̄ separate. When the medium cools down to the confinement transi-
tion point, they will therefore in general be too far apart to see each other, and
the heavy quark will combine with a light one to form heavy flavored mesons.

Due to their small size, quarkonia can, in principle, survive the deconfinement
phase transition. However, because of color screening, no bound state can exist
at temperatures T > TD, when the screening radius, 1/µD(T ) becomes smaller
than the typical bound-state size.

With increasing temperature, a hot medium will lead to successive quarko-
nium melting: bigger size resonances, such as χc and ψ′ are dissolved first, while
more tightly bound states, such as J/ψ, are destroyed later. Hence the suppres-
sion of specific quarkonium states serves as a thermometer of the medium.

In fact, a slight reduction in quarkonium production can be noticed even in or-
dinary nuclear matter, due to absorption by nucleons and comoving secondaries.
In order to take into account this effects, it is of extreme importance to achieve a
good knowledge of the quarkonia absorption cross section behavior from pA and
pp data. Only when such a baseline is clearly understood, it is finally possible
to search for “anomalous” suppression patterns, which are a clear signature of
deconfinement.

Evidences of the phenomenon have been found by the NA50 experiment at
CERN SPS[3], as shown in Figure 1.6.

Figure 1.6: The J/ψ/Drell-Yan cross section ratio as a function of Npar t for three analysis

of the P bP b 2000 data sample in Na50, compared to (left) and divided by (right) the

normal nuclear absorption pattern[3].
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The LHC will add a significant contribution in the understanding of QGP via
heavy quarkonia probes. The achievable energy is unique for suppression studies
since it allows, for the first time, the spectroscopy of charmonium and bottomo-
nium states in heavy ion collisions. In particular, because the Υ is expected to
dissolve significantly above the critical temperature, the spectroscopy of the Υ
family at the LHC energies should reveal unique information on the characteris-
tics of the QGP.

On the other hand, the study of heavy quark resonances in heavy ion collisions
at the LHC is subject to significant differences with respect to lower energies. In
addition to prompt charmonia produced directly via hard scattering, secondary
charmonia can be produced from bottom decay, DD̄ annihilation, and by coales-
cence mechanisms which could result in enhancement rather than suppression.

The role of jets as a deconfinement probe was first proposed in 1982 by
Bjorken. He stressed t hat a “high-pT or gluon might lose tens of GeV of its initial
transverse momentum while plowing through quark-gluon plasma produced in its
local environment”. While Bjorken estimates based on collisional energy loss had
to be revised, it was later suggested that the dominant energy-loss mechanism is
radiative rather than collisional. In particular, the mechanism is not the direct
analogous of the Abelian bremsstrahlung radiation, but a genuine non-Abelian
effect: gluon rescattering.

Since the partonic energy loss grows quadratically with the in-medium path
length and is proportional to the gluon density, the observation of jet quenching
in heavy ion collisions can be accounted as a proof of deconfinement. It is clear
that, in order to notice a “ quenching”, comparisons with jets in ordinary matter
have to be performed. An important benchmark for fragmentation function of
jets will be provided by analyses of pp collisions.

Hadronic probes are not the only ones able to give information on the formed
medium. A lot of advantages can arise from the use of electromagnetic probes.
Indeed, owing to their small coupling, photons, once produced, don’t interact
with the surrounding matter and can thus provide information on the state of
matter at the time of their formation.

The production of photons in the different stages of heavy-ion collision can
be summarized qualitatively as follows.

1. Early in the collisions, so-called “prompt” photons are produced by parton-
parton scattering in the primary nucleus-nucleus collisions. An important
background to such photons is the decay π0→ γγ.

2. In the following stage of the collision, a quark-gluon plasma is expected
to be formed with a temperature up to 1 GeV. Photons are radiated off
the quarks which undergo collisions with other quarks and gluons in the
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thermal bath. The energy spectrum of these photons is exponentially sup-
pressed, but should extend up to several GeV.

3. The plasma expands and cools. At the critical temperature, a hadronic
phase is formed, during which photons can be produced in hadron rescat-
tering or in resonance decays. The mechanism continues until the reso-
nances cease to interact, that means until the freeze-out temperature (∼
100 MeV) is reached. Photons produced in this phase will have energies
between few hundred MeV and several GeV.

4. Finally, after freeze-out, further photons can be produced by the decay of
π0’s, η’s and higher resonances. Their energy lies in the range of up to few
hundred MeV.

The prompt photons of phase one constitutes an “irreducible” background to
thermal photons of phase two and three. Such background has to be kept under
control, for example via comparison to the pp benchmark. The occurrence of an
excess in thermal photons (after background subtraction) in the few GeV range,
would be a clear indication of a thermalized medium.

Lepton pair production shows analogies with the photon generation. In fact,
they are emitted throughout the evolution of the system, and with the same stages
described above.

The prompt contribution to the continuum in the dilepton mass range above
pair mass M ' 2 GeV is dominated by semileptonic decays of heavy flavor mesons
and by the Drell-Yan process (Figure 1.7). The latter was particularly important
in previous experiments, not as a deconfinement probe, but because it gives in-
formation on the initial state. Its prediction were usually adopted as a benchmark
in heavy ion collisions, as it is affected only by ordinary nuclear matter effects,
but it is not modified by the formation of a hot dense system. However, in the
LHC, it is overwhelmed by heavy quark decays, which dominate the lepton pair
continuum between the J/ψ and the Z0 peaks.
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Figure 1.7: Drell-Yan process.
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Dileptons have the same functionality as photons in the different stages of the
system evolution, but, in addition, they offer distinct advantages. In particular,
lepton pairs carry an additional variable, the pair invariant mass, which encodes
dynamical information on the vector excitations of matter.

At masses above ∼ 1.5 GeV thermal radiation is expected to originate from
the early hot phases, with a rather structureless emission rate determined by
perturbative qq̄ annihilation. The physics objective is then similar to that of the
photon case, which is the discrimination of the QGP radiation from the large
prompt background.

At low masses (less than 1.5 GeV), thermal dilepton spectra are dominated
by radiation from the hot hadronic phase. Here, the electromagnetic current is
saturated by the light vector mesons (ρ, ω and φ), allowing direct access to their
in-medium modifications.

A schematic view of the characteristic dilepton sources in ultrarelativistic
heavy ion collisions is shown in Figure 1.8. The plot was obtained for center
of mass energies lower than the LHC one, and it is shown here in order to get a
rough idea of the dilepton mass distribution. As previously said, at high energies
contributions from bottom flavored hadrons become important.

Figure 1.8: Expected sources for dilepton production as a function of invariant mass in

ultra-relativistic heavy ion collisions. The plot, obtained for lower energies than LHC, is

meant to give a rough idea of mass spectra in the low mass region. At higher energies

contributions from bottom flavored hadron decays become important.
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As in the case of photons, the determination of details of the medium effect
relies on comparisons to smaller systems and to pp collisions.

1.1.2.5 Proton-proton collisions

ALICE has several features that make it an important contributor to proton-
proton physics at the LHC. Its design allows particle identification over a broad
momentum range, powerful tracking with good resolution from 100 MeV/c to
100 GeV/c, and excellent determination of secondary vertices. These, combined
with a low material thickness and a low magnetic field, will provide unique in-
formation about low-pT phenomena in pp collisions.

A benchmark for heavy ion physics The identification of phenomena due to
the formation of a new state of matter needs a good knowledge of ordinary nu-
clear matter effects, that can be achieved through comparison with pp collisions.
A long list of observables have to be analyzed to this aim; some of them have al-
ready been presented in the previous section, but the overview will be completed
in the following.

• Particle multiplicities: differences in particle multiplicities between pp
and AA are related to the features of parton distributions in the nucleon
with respect to those in nuclei (shadowing) and to the onset of saturation
phenomena occurring at small x .

• Particle yields and ratios: particle ratios are indicative of the chemical
equilibration achieved in AA collisions and should be compared to those in
pp collisions.

• Ratios of momentum spectra: the ratios of transverse momentum spectra
at sufficiently high momenta allow to discriminate between the different
partonic energy losses of quarks and gluons. In particular, due to their
different color representation, hard gluons are expected to loose approxi-
matively a factor of two more energy than hard quarks.

The dominant error for all these observables is often due to the systematics.
In order to reduce it, it is thus of fundamental importance to measure the physical
quantities in the same experimental setup, as it will be done in ALICE.

Specific aspects In addition to the benchmark role for P bP b collisions the
study of pp physics in the ALICE experiment has an importance of its own. In
particular, the characteristics of the LHC will allow the exploration of a new range
of energies and Bjorken-x values. More generally, the ALICE pp programme aims
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at studying non-perturbative strong coupling phenomena related to confinement
and hadronic structure. The main contribution will be in the low transverse mo-
mentum domain for which the ALICE detector was optimized.

During pp collisions, ALICE efforts will be focused in the study of a large
amount of observables.

• Particle multiplicity. Feynman predicted a simple scaling law for the
p

s
dependence of the observable, which was proved to be only approximate.
Thus, a direct measurement is necessary, in order to get a better under-
standing of the phenomenon. Moreover the high statistics charged mul-
tiplicity study could allow to get access to the initial states, where new
physics such as high-density effects and saturation phenomena sets in.

• Particle spectra. The analysis will allow to study the minijet1 contribu-
tion, by determining the hardening of pT spectra and various correlations
between particles with high pT .

• Strangeness production. The possibility to access considerably increased
charged particle densities, together with a better control of the transverse
momentum measurements, should allow ALICE to explain not well under-
stood phenomena observed in previous experiments. One of these is the
fact that correlation between the mean kaon transverse momentum and
the charged particle multiplicity observed at the Tevatron is significantly
stronger than that for pions.

• Baryon number transfer in rapidity. The rapidity distribution of baryon
number in hadronic collisions is not understood. A number of models
provide explanation of the experimental data, some involving diquark ex-
change, some others adopting purely gluonic mechanism. The ALICE de-
tector, with its particle identification capabilities, is ideally suited to clarify
this issue with abundant baryon statistics in several channels in the central-
rapidity region.

• Correlations. Two-particle correlations have been traditionally studied in
pp multiparticle production in order to gain insight into the dynamics of
high energy collisions via a unified description of correlations and multi-
plicity.

1Jets whose ET , though larger than the hadronic scale, is much smaller than the hadronic center

of mass energy
p

s (at the LHC it means ET ≤ 10GeV). Such jets cannot be understood solely in

terms of the fragmentation of partons of comparable ET , produced in a hard subprocess. The

minijets also receive a contribution from the dynamics of underlying events, which in nucleus-

nucleus collisions have a substantial transverse activity.
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• Heavy flavor production. The low pT cutoff for particle detection will re-
quire a smaller extrapolation of the total heavy flavor cross section, thus
improving precision and clarifying underestimations of some theoretical
models predictions.

• Jet studies. Owing to its ability to identify particles and measure their
properties in a very high density environment, the detector will be able to
study jet fragmentation in a unique way.

• Photon production. Although the production of photons at large trans-
verse momentum has been extensively studied, no good agreement be-
tween experiment and theory has yet been achieved. The rate of production
is essentially proportional to the gluon distribution in the proton, which
can be probed directly by looking at the pT dependence of the photon spec-
trum. ALICE will be able to measure prompt-photon production in a region
where the not well known gluon fragmentation into photon is dominant,
and where NLO calculations become insufficient, thus needing only recently
explored theories.

• Diffractive physics. Even in this case, new physical regions will be reached,
because ALICE should be able to observe central-region events with large
rapidity gaps as well as very low x phenomena (down to 10−6). Investiga-
tion of the structure of the final hadronic state (with particle identification)
produced in diffractive processes can provide important information on the
mechanism of high energy hadronic interactions.

• Double parton collisions. First measurements at Tevatron of double par-
ton collisions show non-trivial correlations of the proton structure in trans-
verse space, which indicate that the structure of the proton is much richer
than the independent superposition of single-parton distribution functions
accessible by deep-inelastic scattering. Since increasing the center of mass
energy leads to an increase of the parton fluxes, it is clear that at LHC
multiple-parton collisions will gain more and more importance, thus allow-
ing a deeper study of the phenomenon.

1.2 Overview of the ALICE detector

The ALICE experiment was first proposed as a central detector in the 1993 Letter
of Intent (LoI), and later complemented by an additional forward muon spec-
trometer designed in 1995. It is a general-purpose heavy-ion experiment, sensi-
tive to the majority of known observables (including hadrons, electrons, muons
and photons). ALICE was designed in order to measure the flavor content and
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phase-space distribution, event by event, for a large number of particles whose
momenta and masses are of the order of the typical energy scale involved (tem-
perature ∼ ΛQC D ∼ 200 MeV). The experiment will be able to cope with the
highest particle multiplicities anticipated for P bP b reactions (dNch/d y = 8000).

The ALICE detector Figure 1.9 has the typical aspect of detectors at colliders,
with a cylindrical shape around the beam axis, but with in addition a forward
muon spectrometer, detecting muons in a large pseudorapidity domain. More-
over, the central barrel angular acceptance is enhanced by detectors located at
large rapidities, thus allowing measurements of low pT particles and of global
event structure. ALICE can be divided in three parts:

1. the central part, which covers ±45◦ (corresponding to the pseudorapidity
interval |η|< 0.9) over the full azimuth and is embedded in a large magnet
with a weak solenoidal field. It consists (from the inside out) of:

• an Inner Tracking System (ITS);

• a cylindrical Time Projection Chamber (TPC);

• a Transition-Radiation Detector (TRD);

• a large area Particle Identification (PID) array of Time Of Flight (TOF)
counters;

• an electromagnetic calorimeter: PHOS;

• an array of counters optimized for High-Momentum inclusive Particle
Identification (HMPID);

2. the forward detectors, constituted of:

• a Zero-Degree Calorimeter (ZDC);

• a Forward Multiplicity Detector (FMD);

• a Photon Multiplicity Detector (PMD);

3. the Forward Muon Spectrometer (FMS).

1.2.1 Inner Tracking System (ITS)

The main purposes of the ITS are the detection of the primary and secondary ver-
tices (hyperons and charm) and the stand-alone track finding of low pT charged
particles, down to pT ' 20 MeV/c for electrons. Moreover it can be used to
improve the momentum resolution at high momenta, to reconstruct low energy
particles and to identify them via energy loss, and, in the end, to define the angles
of the tracks for HBT interferometry analysis.
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Figure 1.9: The ALICE detector.



1.2 – OVERVIEW OF THE ALICE DETECTOR 29

The system consists of six cylindrical layers of coordinate-sensitive detectors.
The granularity required for the innermost planes, given the expected high multi-
plicity of charged particle tracks, can only be achieved with silicon micro-pattern
detectors with true twodimensional readout, such as SPDs and SDDs. In partic-
ular SPDs are used in the first two layers, SDDs in the third and fourth layers,
while in the fifth and sixth, where requirements in term of granularity are less
stringent, strip detectors are adopted.

1.2.2 Time Projection Chamber (TPC)

It is the main tracking detector of ALICE. Beyond track finding, it was specifically
designed for momentum measurement and particle identification by dE/d x . The
mean momentum of the particles tracked in the TPC is around 500 MeV/c. De-
spite being a comparatively slow detector, with about 90 µs drift time over the
full length of 2.5 m, the time projection chamber can cope with the minimum-
bias collision rate in P bP b of about 8 kHz, expected for the design luminosity
L = 1027 cm−2s−1.

1.2.3 Transition-Radiation Detector (TRD)

The TRD detector fills the radial space between the TPC and the TOF. It is con-
stituted by a total of 540 detector modules, each consisting of a radiator and a
multi-wire proportional readout chamber, together with its front-end electronic.

The detector will provide electron identification for momenta greater than
1 GeV/c, where the pion rejection capability through energy-loss measurement
in the TPC is no longer sufficient. Such identification, in conjunction with ITS,
will be used in order to measure open charm and open beauty, as well as light
and heavy vector mesons produced in the collisions. Moreover, the combined use
of TRD and ITS data will allow to separate the directly produced J/ψ mesons
from those coming from B decays.

1.2.4 Particle Identification (PID)

Particle Identification (PID) over a large part of the phase space and for many
different particles is an important design feature of ALICE. There are two detector
systems dedicated exclusively to PID: a TOF and a small system specialized on
higher momenta. The time of flight is a MRPC, with a resolution better than
100 ps. It will be used to separate pions from kaons in the momentum range 0.5<
p < 2 GeV/c, i.e. from the TPC upper limit for K/π separation through dE/d x ,
to the statistics limit in single event. In addition it will be able to distinguish
between electrons and pions in the range 140< p < 200 MeV/c.
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The HMPID was specifically thought for hadron identification in the momen-
tum region above 1.52 GeV/c. The dedicated detector was chosen to be a RICH,
which provides a K/π and K/p separation up to 3.4 GeV/c and 5GeV/c e respec-
tively.

1.2.5 Photon Spectrometer (PHOS)

The PHOS is an electromagnetic calorimeter designed to search for direct pho-
tons, but it can also detect γ coming from π0 and η decays at the highest mo-
menta, where the momentum resolution is one order of magnitude better than
for charged particles measured in the tracking detectors. The study of the high
momentum particles spectrum is extremely useful because it gives information
about the propagation of jets in the dense medium created during the collision
(jet quenching).

In addition to photons, the PHOS also responds to charged hadrons and to
neutral particles such as K0

L , n and η. Some measures have to be taken in order
to reject these particles, such as the inclusion of a charged-particle veto detector
(MWPCs were adopted) in front of the PHOS for charged hadrons, and a cut on
the shower width and on the time of flight for neutral particles. The calorimeter is
placed at 4.6 m from the beam axis, covers the pseudorapidity region |η| ≤ 0.12
8 m2.

1.2.6 Magnet

The last component of the central barrel is the magnet. The optimal choice for
the experiment is a large solenoid with a weak field. The choice of a weak and
uniform solenoidal field together with continuous tracking in a TPC eases con-
siderably the task of pattern recognition. The field strength of ∼0.5 T allows full
tracking and particle identification down to ∼ 100 MeV/c in pT . Lower momenta
are covered by the inner tracking system. The magnet of the L3 experiment
fulfills the requirements and, due to its large inner radius, can accommodate a
single-arm electromagnetic calorimeter for prompt photon detection, which must
be placed at a distance of ∼5 m from the vertex because of the particle density.

1.2.7 Zero-Degree Calorimeter (ZDC)

The main aim of the ZDC is the estimate of the collision geometry through the
measurement of the non interacting beam nucleons (the “spectators”). There
are four calorimeters, two for neutrons and two for protons, placed at 116 m
from the interaction point, where distance between beam pipes (∼8 cm) allows
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insertion of a detector. At this distance, spectator protons are spatially separated
from neutrons from magnetic elements of the LHC beam line.

The neutron detector is made up of a tungsten alloy, while the proton one is
constituted of brass. Both calorimeters have quartz fibers as the active material
instead of the conventional scintillating ones.

1.2.8 Forward Multiplicity Detector (FMD)

The purpose of the FMD is to measure dN/dη in the rapidity region outside
the central acceptance and to provide information for the trigger system in a
very short time. The FMD is a silicon detector segmented into seven disks which
surround the beam pipe at distances of between∼42 and 225 cm from the vertex.
Together they will cover the pseudorapidity range from -3.4 to -1.7 on the muon
arm side and from 1.7 to 5.1 on the opposite hemisphere. It is designed in order
to measure charged particle multiplicities from tens (in pp runs) to thousands
(P bP b runs) per unit of pseudorapidity.

1.2.9 Photon Multiplicity Detector (PMD)

The PMD is a preshower detector that measures the multiplicity and spatial distri-
bution of photons in order to provide estimates of the transverse electromagnetic
energy and the reaction plane. It consists of two identical planes of proportional
chambers with a 3X0 thick lead converter in between. It will be installed at
350 cm from the interaction point, on the opposite side of the muon spectrome-
ter, covering the region 2.3≤ η≤ 3.5 , in order to minimize the effect of upstream
material such as the beam pipe and the structural component of TPC and ITS.

1.2.10 Forward Muon Spectrometer (FMS)

With the forward muon spectrometer it will be possible to study resonances like
J/ψ, ψ′, Υ, Υ′ and Υ′′ through their decay into µ+µ−-pairs, and to disentangle
them from the continuum given by Drell-Yan processes and semi-leptonic decays
of D and B mesons. The study of open heavy flavor production will be interesting
too and it will be also accessible through measurements of e − µ-coincidences,
where the muon is detected by the muon spectrometer and the electron by the
TRD.

A resolution of 70 MeV/c2 in the 3 GeV/c2 region is needed to resolve J/ψ
and ψ′ peaks and of 100 MeV/c2 in the 10 GeV/c2 region to separate Υ, Υ′ and
Υ′′.

This detector is located around the beam pipe and covers the pseudorapidity
range −4.0≤ η≤−2.5. It consists of a passive front absorber to absorb hadrons
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and photons from the interaction vertex. The material must have a small inter-
action length in order to absorb hadrons and a large radiation length, and thus
small Z (X0 ∝ 1/Z), in order to reduce multiple scattering of muons.

Muon tracks are reconstructed by tracking chambers consisting of multiwire
proportional chambers with cathode pad readout. They are embedded in a mag-
netic field generated by a dipole magnet located outside the L3 magnet. The
dimuon trigger is provided by four layers of RPCs operating in streamer mode
located behind the muon filter.

1.2.11 ALICE detector coordinate system

As a conclusion of the detector overview, the officially adopted coordinate system
is provided. It is a right-handed orthogonal Cartesian system with the origin at
the beam intersection point. The axis are defined as follows:

• x-axis is perpendicular to the mean beam direction, aligned with the local
horizontal and pointing to the accelerator center;

• y-axis is perpendicular to the s-axis and to the mean beam direction, point-
ing upward;

• z-axis is parallel to the mean beam direction.

Hence the positive z-axis is pointing in the direction opposite to the muon spec-
trometer. The convention is coherent with other LHC experiments and has been
changed from the one previously adopted in ALICE.

1.3 The ALICE software framework

The ALICE Offline Project has started developing the software framework in 1998.
The decision was taken at the time to build the simulation tool for the Technical
Design Reports of the ALICE detector using the OO programming technique and
C++ as an implementation language.

This lead to the choice of ROOT as framework and GEANT 3.21 as simulation
code. A prototype was quickly built and put in production. The experience with
this was positive, and in November 1998 the ALICE Offline project adopted ROOT
as the official framework of ALICE Offline.

AliRoot is the name ALICE Offline framework for simulation, reconstruction
and analysis. It uses the ROOT system as a foundation on which the frame-
work and all applications are built. Except for large existing libraries, such as
GEANT3.21 and Jetset, and some remaining legacy code, this framework is based
on the Object Oriented programming paradigm, and it is entirely written in C++.
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The ROOT system is now being interfaced with the emerging Grid middleware in
general and, in particular, with the ALICE-developed AliEn system.

Along with the AliRoot Grid infrastructure, there’s also an interactive another
method of parallel computing, on which this thesis is also about: the Parallel
ROOT Facility (PROOF), which extends the ROOT capability on a parallel rather
than distributed computing platform primarily for large-scale analysis, but for
production too.

In this section a description of the main features of the offine framework is
carried out.

1.3.1 Overview of the AliRoot Offine framework

The AliRoot design architecture is schematically shown in Figure 1.10. The
STEER module provides steering, run management, interface classes, and base
classes. The detector code is stored in independent modules that contain the
code for simulation and reconstruction while the analysis code is progressively
added. Detector response simulation can be performed via different transport
codes, the most well-known ones being GEANT3, Fluka (both written in Fortran)
and GEANT4 (object-oriented and written in C++).

Figure 1.10: The AliRoot design architecture.
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1.3.1.1 Simulation

An event generator produces a set of “particles” with their momenta. The set
of particles, where one maintains the production history (in form of mother-
daughter relationship and production vertex) forms the kinematic tree.

The transport package brings the particles through the set of detectors, and
produces hits, which in ALICE terminology means energy deposition at given
point. The hits contain also information (track labels) about the particles that
have generated them. There is one main exception, namely the calorimeter
(PHOS and EMCAL) hits, where a hit is the energy deposition in the whole de-
tecting element volume.

This behavior is correct, since inside these detectors the particle is completely
stopped. Furthermore in some detectors the energy of the hit is used only for
comparison with a given threshold, for example in TOF and ITS pixel layers.
These are in fact “digital” detectors in the sense that they are requested only for
an On-Off response , depending on the threshold overcoming.

At the next step the detector response is taken into account, and the hits
are transformed into digits. As it was explained above, the hits are closely re-
lated to the tracks which generated them. The transition from hits/tracks to
digits/detectors is shown in Figure 1.11 as the left part of the parabolic path.
There are two types of digits: summable digits, where one uses low thresholds
and the result is additive, and digits, where the real thresholds are used, and the
result is similar to what one would get in the real data taking. In some sense
the summable digits are precursors of the digits. The noise simulation is acti-
vated when digits are produced. There are two differences between the digits
and the raw data format produced by the detector: firstly, the information about
the Monte Carlo particle generating the digit is kept, and secondly, the raw data
are stored in binary format as “ payload” in a ROOT structure, while the digits
are stored in ROOT classes.

Two conversion chains are provided in AliRoot: “hits → summable digits →
digits”, and “hits→ digits”. The summable digits are used for the so called event
merging, where a signal event is embedded in a signal-free underlying event. This
technique is widely used in heavy-ion physics and allows to reuse the underlying
events with substantial economy of computing resources. Optionally it is possible
to perform the conversion “digits → raw data”, which is used to estimate the
expected data size, to evaluate the high level trigger algorithms, and to carry on
the so called computing data challenges.

The whole simulation process, represented in Figure 1.12(a), includes the
following steps regardless of the detector response simulation package in use.

• Event generation of final-state particles. The collision is simulated by a
physics generator code (since they predict different scenarios for the same
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Figure 1.11: The parabolic path of data flow in event generation.

aspect, one has many generators like PHYTIA, HIJING and FLUKA) or a
parameterization (with the class AliGenParam) of the kinematical variables
and the final-state particles are fed to the transport program.

• Particle tracking. The particles emerging from the interaction of the beam
particles are transported in the material of the detector, simulating their
interaction with it, and the energy deposition that generates the detector
response (hits).

• Signal generation and detector response. During this phase the detector
response is generated from the energy deposition of the particles traversing
it. This is the ideal detector response, before the conversion to digital signal
and the formatting of the front-end electronics is applied.

• Digitization. The detector response is digitized and formatted according
to the output of the front-end electronics and the data acquisition system.
The results should resemble closely the real data that will be produced by
the detector.

• Fast simulation. The detector response is simulated via appropriate pa-
rameterizations or other techniques that do not require the full particle
transport. The AliSimulation class provides a simple user interface to
the simulation framework.
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(a) Simulation.

(b) Reconstruction.

Figure 1.12: The AliRoot Simulation and Reconstruction frameworks.
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1.3.1.2 Reconstruction

Most of the ALICE detectors are tracking detectors. Each charged particle going
through them leaves a number of discrete signals that measure the position of the
points in space where it has passed. The task of the reconstruction algorithms is
to assign these space points to tracks and to reconstruct their kinematics. This
operation is called track finding.

A good track-finding effciency is required in ALICE for tracks down to pT =
100 MeV/c even at the highest track density, with occupancy of the electronics
channels exceeding 40% in the TPC inner rows at the maximum expected track
multiplicity. Given this situation, most of the development is done for P bP b
central events, since lower multiplicities are considered an easier problem once
the high-multiplicity ones can be handled. However, the opposite may be true for
some quantities, such as the main vertex position, where a high track multiplicity
will help to reduce the statistical error.

The following terms usually describes data at different steps of reconstruction,
shown on the right part of Figure 1.11 and highlighted in Figure 1.12(b).

• RAWS. This is a digitized signal (ADC count) obtained by a sensitive pad of
a detector at a certain time.

• RECS – reconstructed space point. This is the estimation of the position
where a particle crossed the sensitive element of a detector (often, this is
done by calculating the center of gravity of the “cluster”).

• ESD – reconstructed track This is a set of five parameters (such as the cur-
vature and the angles with respect to the coordinate axes) of the particle’s
trajectory together with the corresponding covariance matrix estimated at
a given point in space. ESDs also contain primary and secondary vertices,
pileup information, multiplicities

The input to the reconstruction framework are digits in ROOT TTree format
or Raw Data format. First a local reconstruction of clusters is performed in each
detector. Then vertices and tracks are reconstructed and particle types are iden-
tified. The output of the reconstruction is the ESD. The AliReconstruction
class provides a simple user interface to the reconstruction framework.

1.3.1.3 Fast Simulation

The following description of a fast simulation process refers to the muon spec-
trometer but the same concepts may as well be applied for central barrel detec-
tors. The high luminosity and the center of mass energy of LHC make it a high
statistics “particle factory”. The expected number of quarkonium (charmonium
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in particular) states detected in the muon spectrometer could be hardly produced
and analyzed by full simulations in a reasonable amount of time. Thus a new kind
of approach was adopted in heavy quarkonia production: the fast simulation.

This technique is based on the parametrization of the response of the muon
spectrometer at the single muon level, which allows to considerably reduce the
requested computational time.

Given a muon of momentum p, generated at the interaction point at angles
θ and φ, the fast simulation applies the smearing of the apparatus and gives
the reconstructed p′, θ ′ and φ′, together with the detection probability Pdet for
that muon. This last term is the product of three factors, giving the probability
for that muon to satisfy the acceptance (Pacc), reconstruction (Prec) and trigger
(Pt r i g) requirements.

The first step towards the fast simulation is the so-called fast reconstruction
of the muon track in the tracking system of the muon spectrometer. This proce-
dure allows to skip the time consuming digitization and clusterization processes.
Starting from a sample of muons coming from full simulations, the residual dis-
tributions are created and then parametrized by a superposition of two gaussians
and a constant.

The residual is defined as ∆y = ycluster − yhit , where ycluster is the impact
point coordinate obtained with the cluster reconstruction, while the yhit is the
generated hit coordinate.

Parametrizations obtained can be applied to reconstruct the Υ and J/ψ in-
variant mass spectra with the proper pT cut. The process still needs the creation
of hits, but the skipping of digitization and clusterization leads to a considerable
speed gain.

The second step consists in the elimination of the hits creation phase. The
objective is actually to direct smear the kinematic variables for each single muon,
passing from generation to detector response without any intermediation. In
order to obtain this result it is first necessary to parametrize the experimental
resolution on the kinematical variables of the muons (∆p = prec − pgen, ∆θ =
θrec − θgen, ∆φ = φrec − φgen), together with the acceptance and efficiency in
several (p,θ ,φ) intervals. To this end 3D grids have been prepared (Look Up
Tables) in which parameters for the acceptance and for the reconstruction and
trigger efficiencies are stored.

Comparison with full simulation shows a very good agreement in the region
of p > 8 GeV/c, but some discrepancies are present at very low momenta. The
phase space portion with p < 8 GeV/c is quite peculiar, showing steep variations
due to the fast rise of acceptance and efficiency. In any case the accepted muons
is about the same for full and fast simulation, even in the problematic region.
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1.4 Computing Model in the ALICE Experiment

1.4.1 ALICE computing needs

The investment for LHC computing is massive, not only from the computational
point of view, but expecially from the storage point of view. For ALICE only we
foresee[8]:

• data acquisition rate of 1.25 GiB/s from ion-ion collisions;

• approximately 5 PiB of data stored on tape each year;

• at least 1.5 PB of data permanently online on disks;

• an amount of CPU power estimated at the equivalent of 25 000 personal
computers of the year 2003.

The whole resources needed lead to a total cost estimation between 10 and 15
million Euros.

The need for big storages clearly points out that the ALICE computing model
must be developed around data, not around computing power: in other words,
it has to be data-centric. This means that, with a huge amount of data to store
and analyze like that, developers must take into account any barriers between
the program and the data (e.g., the network infrastructures) and remove it by
making the program close to the data and not vice-versa.

Both the cost and the requirements represent a new challenge from the com-
putational point of view, representing a milestone for the whole Computer Sci-
ence, not only Physics. The preparation of LHC coincided with the rising of a
new, distributed computing model called “the Grid”, which seems to meet the
requirements to manage such a big computing power and storage capacity.

The following sections analyze the so-called Grid2 distributed computing mo-
del and another model of processing data called interactive (or chaotic) analysis,
which is indeed the computing model on which this thesis is primarily about.

1.4.2 Distributed computing: the ALICE Grid

As we have seen in § 1.4.1, a large amount of both computing and storage re-
sources is necessary to process and store the data generated by each LHC experi-
ment, including ALICE.

2It is a common mistake to consider “Grid” an acronym, although it is not: the name has been

choosen in analogy with the “power grid”, but the power supplied by the Grid is actually computing

power.



40 OVERVIEW OF THE ALICE EXPERIMENT

Since the conceptual design of the LHC experimental programme, it was rec-
ognized that, in analogy with the fact that “human resources” (i.e., the physicists)
aren’t used to work in a single place but they are naturally distributed instead, this
time the required data processing and storage resources cannot be consolidated
at a single computing centre too.

There are many reasons why to distribute HEP computing facilities through
the institutes and universities participating in the experiment.

• First of all, there’s a technical reason; concentrating such a huge amount of
computing resources in a single place it would be physically impossible.

• As of its nature, CERN and LHC investors are widespread all over the world:
it is likely that funding agencies will prefer to provide computing resources
locally in their own country.

• Moreover, many physicists work in countries where there’s less financial
support to the LHC experiments: these physicists should be able to access
computational resources though, in order to limit the so-called digital di-
vide.

The technical side of the decentralized offline computing scenario has been
formalized in the so-called MONARC model3 schematically shown in Figure 1.13.
MONARC describes an assembly of distributed computing resources, concen-
trated in a hierarchy of centres called Tiers, where Tier-0 is CERN, Tier-1s are
the major computing centres which provide a safe data storage (thus providing a
natural and distributed backup system through replication), likely in the form of
a MSS, Tier-2s are smaller regional computing centres. The MONARC model also
foresees Tier-3s which are university departmental computing centres and Tier-4s
that are user workstations; however, the important Tiers in our discussion are the
Tier-1s and Tier-2s (Torino’s site is among them): Tier-0 has a “supervision” role,
while the two lowest Tiers are not relevant in current Grid deployments.

The major difference between the first three Tiers is the Quality of Service
(QoS) and reliability of the computing resources at every level, where the highest
QoS is offered by the Tier 0/Tier 1 centres.

The basic principle underlying the ALICE computing model is that every physi-
cist should have equal access to the data and the computing resources necessary
for its processing and analysis. Thus, the resulting system will be very complex
with hundreds of components at each site with several tens of sites. A large num-
ber of tasks will have to be performed in parallel, some of them following an
ordered schedule. Assignment of these tasks based on their nature and resources
requirements follow.

3http://www.cern.ch/MONARC/

http://www.cern.ch/MONARC/
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Figure 4.15: The Monarc model.

Unfortunately, the building blocks to realise such a system are missing: distributed resource manage-
ment; distributed name-space for les and objects; distributed authentication; local resource management
of large clusters; transparent data replication and caching; WAN–LAN monitoring; distributed logging
and bookkeeping and so on. However the HEP community is not alone in this endeavour. All the
above issues are central to the new developments in the US and in Europe under the collective name of
Grid [30].

The Grid was born to facilitate the development of new applications based on high-speed coupling
of people, computers, databases, instruments, and other computing resource. The Grid should allow
“dependable, consistent, pervasive access to high-end resources” for:

• online instruments;

• collaborative engineering;

• parameter studies;

• browsing of remote datasets;

• use of remote software;

• data-intensive computing;

• very large-scale simulation.

This is the latest development of an idea born in the 1980s under the name of meta-computing and
complemented by the Gbit test-beds in the early 1990s. The issues that are now the primary aim of the
Grid are crucial to the successful deployment of LHC computing in the sense indicated by the Monarc
model. Therefore HEP computing has become interested in Grid technologies, resulting in the launching

Figure 1.13: The MONARC model.

• The ALICE computing model foresees that one copy of the raw data from
the experiment will be stored at CERN (Tier-0) and a second copy will
be distributed among the external (i.e. not at CERN) Tier-1 centres, thus
providing, as we have already stated, a natural backup. Reconstruction to
the ESD level will be shared by the Tier-1 centres, with the CERN Tier-0
responsible for the first reconstruction pass.

• Subsequent data reduction to the AOD level, analysis and Monte-Carlo pro-
duction will be a collective operation where all Tier-1 and 2 centres will
participate. The Tier-1s will perform reconstruction and scheduled analy-
sis; the Tier-2s will perform single-user Monte-Carlo and end-user analysis
instead. Tier-2 tasks are largely unpredictable, and they don’t meet the QoS
and resources requirements of higher Tiers.

This kind of tiered structure of computing and storage resources has to be
transparent to the physicists in order to be used efficiently: physicists should
have to deal with this whole structure just like it was a single entity.

The commonality of distributed resources management is being realized un-
der the currently ongoing development of the Grid[14]. It was conceived to facili-
tate the development of new applications based on high-speed coupling of people,
computers, databases, instruments, and other computing resources by allowing
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“dependable, consistent, pervasive and inexpensive access to high-end resources”,
as originally stated as main features of the Grid by Foster and Kesselman[13].

We can foresee an evolution of the MONARC model to a tier-free model, where
that transparent single entity can also be called a single “cloud”, and we refer to
that model as cloud computing: in a well-functioning cloud computing environ-
ment the distribution of tasks to the various computing centres would be per-
formed dynamically, based on the availability of resources and the services that
they advertise, irrespective of the Tier level division of tasks based on QoS and
resources requirements.

1.4.2.1 AliEn: the ALICE Grid user interface

AliEn[4] has been primarily conceived as the ALICE user interface into the Grid
world, and it is actually an interface that runs on other real Grid middlewares.
The Grid is a relatively new concept from the implementation point of view, so
there isn’t a standard middleware that can be considered definitive and stable:
AliEn’s aim is to provide, from the Grid point of view, a uniform abstraction layer
that remains standard for ALICE users and developers even when the underlying
real middleware eventually changes; from the Pyhsicists point of view AliEn is an
interface that makes ALICE resources access transparent, shielding the users from
the underlying Grid complexity and heterogeneity.

As new middleware becomes available, we shall interface it with AliEn, evalu-
ating its performance and functionality. Our final objective is to reduce the size of
the AliEn code, integrating more and more high-level components from the Grid
middleware, while preserving its user environment and possibly enhancing its
functionality. If this is found to be satisfactory, then we can progressively remove
AliEn code in favour of standard middleware. In particular, it is our intention to
make AliEn services compatible with the Open Grid Services Architecture (OGSA)
that has been proposed as a common foundation for future Grids. We would be
satisfied if, in the end, AliEn would remain as the ALICE interface into the Grid
middleware. This would preserve the user investment in AliEn and, at the same
time, allow ALICE to benefit from the latest advances in Grid technology. This ap-
proach also has the advantage that the middleware will be tested in an existing
production environment.

Through interfaces, it can use transparently resources of different Grids de-
veloped and deployed by other groups: in other words, not only is AliEn capable
of providing a layer of abstraction between the middleware and the user, but it is
even capable of enabling different middlewares (that speak different languages)
to cooperate through that layer of abstraction: in short words, AliEn can in prin-
cible be seen as a federation of different and collaborating Grids (Figure 1.14).
In the future, this cross-Grid functionality will be extended to cover other Grid
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flavours.

Figure 1.14: The ALICE Grid as a federation of collaborative Grids.

The system is built around Open Source components and uses a Web Ser-
vices model4 and standard network protocols. Less than 5% is native AliEn code
(mostly code in PERL), while the rest of the code has been imported in the form
of Open Source packages and modules.

Web Services play the central role in enabling AliEn as a distributed comput-
ing environment. The user interacts with them by exchanging SOAP messages
and they constantly exchange messages between themselves behaving like a true
Web of collaborating services. AliEn consists of the following components and
services:

• authentication, authorization and auditing services;

• workload and data management systems;

• file and metadata catalogues;

• the information service;

• Grid and job monitoring services;

• a SE and a CE for each Grid site, that serve the WNs that actually run jobs.

A schematic view of the AliEn services, their location and interaction with the
native services at the computing centres is presented in Figure 1.15.

4http://www.w3.org/2002/ws/

http://www.w3.org/2002/ws/
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6 3 Distributed computing and the Grid

job monitoring services; storage and computing elements. A schematic view of the AliEn services, their
location and interaction with the native services at the computing centres is presented in Fig. 3.2.

The AliEn workload management system is based on the so-called ‘pull’ approach. A service man-
ages a common task queue, which holds all the jobs of the ALICE Virtual Organization (VO). On each
site providing resources for the ALICE VO, Computing Element (CE) services act as ‘remote queues’
giving access to computational resources that can range from a single machine, dedicated to running a
specific task, to a cluster of computers in a computing centre, or even an entire foreign Grid. When jobs
are submitted, they are sent to the central queue. The workload manager optimizes the queue taking into
account job requirements such as the input files needed, the CPU time and the architecture requested,
the disk space request and the user and group quotas. It then makes jobs eligible to run on one or more
computing elements. The CEs of the active nodes get jobs from the central queue and deliver them to the
remote queues to start their execution. The queue system monitors the job progress and has access to the
standard output and standard error.

Input and output associated with any job are registered in the AliEn File Catalogue (FC), a virtual
file system in which logical names, with a semantics similar to the Unix file system, are assigned to
files. Unlike real file systems, the FC does not own the files; it only keeps an association between one or
possibly more Logical File Names (LFN) and (possibly more than one) Physical File Names (PFN) on a
real file or mass storage system. The correspondance is kept via the Global Unique file IDentifier (GUID)
stored in the FC. The FC supports file replication and caching and it provides the information about file
location to the RB when it comes to scheduling jobs for execution. These features are of particular
importance, since similar types of data will be stored at many different locations and the necessary data
replication is assumed to be provided transparently and automatically by the Grid middleware. The AliEn
file system associates metadata with LFNs.

ALICE has used the system for distributed production of Monte Carlo data, reconstruction and anal-
ysis at over 30 sites on four continents. The round of simulation, reconstruction and analysis during the
PDC’04 was aimed at providing large amounts of simulated data for physics studies as well as testing the
main components of the ALICE computing model. During the data challenge, more than 400 000 jobs
were successfully run worldwide from the AliEn Task Queue (TQ), producing 40 TB of data. Computing
and storage resources were available both in Europe and the US. The amount of processing needed for
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Figure 3.2: Schematic view of the AliEn basic components and deployment principles.

Figure 1.15: Schematic view of the AliEn basic components and deployment principles.

The AliEn workload management system is based on the so-called “pull” ap-
proach. A service manages a common TQ, which holds all the jobs of the ALICE
VO. On each site providing resources for the ALICE VO, CE services act as “re-
mote queues” giving access to computational resources that can range from a
single machine, dedicated to running a specific task, to a cluster of computers in
a computing centre, or even an entire foreign Grid. When jobs are submitted,
they are sent to the central queue. The workload manager optimizes the queue
taking into account job requirements such as the physical location of the SEs that
keep needed input files, the CPU time and the architecture requested, the disk
space request and the user and group quotas (Figure 1.16); it then makes jobs
eligible to run on one or more computing elements. The CEs of the active nodes
get jobs from the central queue and deliver them to the remote queues to start
their execution. The queue system monitors the job progress and has access to
the standard output and standard error.

Input and output associated with any job are registered in the AliEn FC, a
virtual file system in which logical names, with a semantics similar to the Unix
file system, are assigned to files. Unlike real file systems, the FC does not own
the files; it only keeps an association between one or possibly more LFNs and
(possibly more than one) PFNs on a real file or MSS. The correspondance is
kept via the GUID stored in the FC. The FC supports file replication and caching
and it provides the information about file location to the RB when it comes to
scheduling jobs for execution. These features are of particular importance, since
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Figure 1.16: The AliEn workload management.

similar types of data will be stored at many different locations and the necessary
data replication is assumed to be provided transparently and automatically by the
Grid middleware. The AliEn file system associates metadata with LFNs.

The file catalogue is not meant to support only regular files – the file system
paradigm was extended and includes information about running processes in the
system (in analogy with the /proc directory on most Unices). Each job sent to
AliEn for execution gets an unique id and a corresponding /proc/id directory
where it can register temporary files, standard input and output, as well as all
job products. In a typical production scenario, only after a separate process has
verified the output, will the job products be renamed and registered in their final
destination in the file catalogue. The entries (LFNs) in the AliEn file catalogue
have an immutable unique file id attribute that is required to support long refer-
ences (for instance in ROOT) and symbolic links.

The hierarchy of files and directories in the AliEn file catalogue reflects the
structure of the underlying database tables. In the simplest and default case,
a new table is associated with each directory. In analogy to a file system, the
directory table can contain entries that represent the files or again subdirecto-
ries. With this internal structure, it is possible to attach to a given directory table
an arbitrary number of additional tables, each one having a different structure
and possibly different access rights while containing metadata information that
further describes the content of files in a given directory. This scheme is highly
granular and allows fine access control. Moreover, if similar files are always cata-



46 OVERVIEW OF THE ALICE EXPERIMENT

logued together in the same directory this can substantially reduce the amount of
metadata that needs to be stored in the database. While having to search over a
potentially large number of tables may seem ineffective, the overall search scope
has been greatly reduced by using the file system hierarchy paradigm and, if data
are sensibly clustered and directories are spread over multiple database servers,
we could even execute searches in parallel and effectively gain performance while
assuring scalability.

Figure 1.17: The AliEn file catalogue, showing how the virtual AliEn filesystem can also

contain real-time information about running jobs, just like the /proc filesystem of many

Unices.

The Grid user data analysis has been tested in a limited scope using tools
developed in the context of the ARDA project5 (the aliensh interface and the
analysis tools based on it). Two approaches were prototyped and demonstrated
so far: the asynchronous (interactive batch approach) and the synchronous (true
interactive) analysis. Both of these two approaches are integrated with AliEn:
while the first one gives satisfactory results and it is currently used in production,
it seems that interactive analysis can not be integrated gracefully with AliEn on
small (say, Tier-2) centres, by violating somehow the foreseen AliEn evolution
towards a cloud computing model (that is a “tierless” model, as we have already
noted).

The asynchronous model has been realized by extending the ROOT function-
ality to make it Grid-aware. As the first step, the analysis framework has to
extract a subset of the datasets from the file catalogue using metadata conditions

5http://lcg.web.cern.ch/LCG/peb/arda/Default.htm

http://lcg.web.cern.ch/LCG/peb/arda/Default.htm
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provided by the user. The next part is the splitting of the tasks according to the
location of datasets.

Once the distribution is decided, the analysis framework splits the job into
sub-jobs and inserts them in the AliEn queue with precise job descriptions. These
are submitted to the local CEs for execution. Upon completion, the results from
all sub-jobs are collected, merged and delivered to the user.

A deeper insight on interactive analysis (both AliEn-based and not) will be
presented on § 1.4.3.

1.4.3 Interactive analysis: PROOF

The need for interactive analysis arose from tasks that require too much com-
puting power to be run on a local desktop computer or laptop, but that are not
meant to be run on the Grid.

Referring to § 1.4.2, let’s consider tasks meant to be run on Tier-2s: these
are the sites where user analysis runs, along with single-user Monte-Carlo. These
tasks generally require many runs in order for physicists to fine-tune analysis or
Monte-Carlo parameters. Moreover, an user analysis that needs fine-tuning is
usually under heavy development and thus, with many bugs, that can even affect
system stability: in other words, this kind of user analysis does not meet the QoS
standards in order to be run on the Grid.

Because of fine-tuning and debugging, these tasks show unpredictable com-
puting power and memory usage, along with unexpected behaviors: for these
reasons we globally refer to these tasks with the expression “chaotic analysis”.

In order for physicists to do chaotic analysis a special facility needs to be de-
veloped. This facility will consist on several computers on which the job is split by
a transparent user interface, which should give access to the computing resources
via the tools physicists are accustomed to and which should hide the implemen-
tation (the fact that the job is actually split onto several machines should be done
automatically without user intervention).

From these ideas, Parallel ROOT Facility (PROOF) was born. PROOF[5] is
an extension of the well-known ROOT system that allows the easy and trans-
parent analysis of large sets of ROOT files in parallel on remote computer clus-
ters. PROOF functionality can be accessed directly from within ROOT: this is why
PROOF is transparent for the user.

Besides from transparency, the other main PROOF design goals are scalability
and adaptability. Scalability means that the basic architecture should not put any
implicit limitations on the number of computers that can be used in parallel, and
should easily grow with the minimum effort for the system administrator, and
with no effort at all for the end user. With adaptability we mean that the system
should be able to adapt itself to variations in the remote environment (changing
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load on the cluster nodes, network interruptions, etc.).
Being an extension of the ROOT system, PROOF is designed to work on ob-

jects in ROOT data stores. These objects can be individually keyed objects as well
as TTree based object collections. By logically grouping many ROOT files into a
single object, very large data sets can be created. In a local cluster environment
these data files can be distributed over the disks of the cluster nodes or made
available via a NAS or SAN solution.

PROOF adaptability means that it can be, in principle, used in two different
multi-core and multi-machine architectures: distributed computing and parallel
computing.

• With parallel computing we want a single task to be split on several ma-
chines that are aggregated locally. Because of the aggregation, the sys-
tem administrator has the direct control over each PROOF machine and
can adapt configurations in order to create a homogeneous system. Since
PROOF is meant to be interactive, having the workers aggregated simplifies
the process of jobs synchronization between the different workers.

• With distributed computing we basically mean the Grid model: tasks run
on resources that are not under control of a single system administrator,
and they are distributed around the world. PROOF is designed to be fault-
tolerant, by making transparent for the user the fact that the job is running
on local machines or on distributed, distant machines. In such an environ-
ment the processing may take longer (in this case the term “interactive”
may not be appropriate), but the user will still be presented with a single
result, like the processing was done locally. Doing distributed computing
with PROOF can be a tricky task, because job synchronization is difficult to
be accomplished on distant, inhomogeneous machines, thus requiring an
external interface (AliEn, as we will see).

1.4.3.1 PROOF for parallel computing

The typical and most stable use of PROOF is for parallel computing on local
facilities, placed close to the physicists that do chaotic analysis. This configuration
requires three different kinds of machines.

• The slaves: these are the machines that run the job. Each slave is a ma-
chine which can hold several workers, each worker being a daemon that
actually does the computation. On a typical slave configuration we have a
worker per each core. In addition, slaves share part of their disk space in
a single “pool” to hold data that needs to be analyzed: in other words, the
PROOF pool can be seen as a single big Network-Attached Storage (NAS)
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which is indeed the sum of the disks of every machine that acts as a PROOF
slave.

• The master: this server has the role of coordinator. When physicists want
to do something on PROOF they simply connects to the master. Since the
computing model is data-centric in order to minimize network transfers,
the master sends the jobs as close as possible to the machines that hold the
data. The best situation occurs when the job runs on a slave that is also
the one which has the data to process, since in this case the transfer speed
bottleneck is the drive speed, not the network speed.

• The client: this is the user’s machine running ROOT that connects to the
master.

A schematic representation of this structure and network configuration is repre-
sented in Figure 1.18 along with possible data transfers that may occur between
the machines (mainly slaves).

Figure 1.18: Conventional setup of a PROOF farm, also showing machines involved in

data transfers.

1.4.3.2 PROOF for distributed computing

A distributed PROOF environment can be seen as an extension of the parallel
model, that can in principle be achieved thanks to the functionalities of both
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PROOF and AliEn.
The PROOF feature that should qualify it suitable for a distributed, inhomo-

geneous computing is its multi-layered architecture. The multi-layered structure
is very similar to the MONARC model: in PROOF terminology, we have on each
tier masters that depend on a master of an upper level. Each sub-master is trans-
parently seen by the super-master as a worker: the super-masters distribute jobs
through the sub-masters, which distribute jobs to the workers (although there
may be several other levels). When a worker finishes its job, the results are grad-
ually merged by the masters until a single file is transparently presented by the
super-master to the physicist. The concept of a master being also a worker is
illustrated in Figure 1.19.

Figure 1.19: Multi-layered setup of a distributed PROOF farm, where each master is

seen by a worker by its superior.

However, this solution requires a much tighter integration between ROOT
and the Grid services, where the framework should be able to execute in parallel
and in real-time all sub-jobs associated to the main user job. In addition, the sys-
tem should automatically scale the number of running processes to the amount of
available resources at the time of execution. All these features are indeed AliEn’s
features, and by integrating AliEn in PROOF this task can be accomplished. This
will allow for an efficient planning of critical analysis tasks, where the predictabil-
ity of the execution time is very important. As such it is an essential building block
of the ALICE computing model.

However a distributed PROOF environment has a number of drawbacks. First
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of all, computing resources are limited, so that interactive analysis should share
resources with the Grid without meeting the required QoS – interactive analy-
sis is chaotic and does not mix well by conflicting with predictable, non-chaotic
Grid jobs. Moreover, as we have already noted, a multi-layered architecture is
incompatible with a cloud computing model.

The need for distributing PROOF resources (rather than parallelizing with
dedicated local servers) arises because Tier-2s can not in general afford the cost
of a dedicated facility and should find a way to share resources with the Grid. The
integration between AliEn and PROOF seems the most straightforward solution
(because we let AliEn, that already knows how resources are distributed and
used, do the load balancing); there’s another solution though that permits us to
share resources with the Grid on Tier-2s without badly interfering with the jobs
and without distributing (but just parallelizing) interactive analysis: the idea of
the Virtual Analysis Facility (VAF), that will be explored, discussed, prototyped
and benchmarked in the following chapters of this thesis.





Chapter 2

Feasibility of a Virtual Analysis

Facility

2.1 Ideas behind the Virtual Analysis Facility

As we have already discussed at the end of the previous chapter, with the begin-
ning of real data acquisition from LHC experiments the need for an interactive
data analysis facility which gives great CPU power to physicists without any delay
is constantly increasing to cover for CPU needs of rapid turn-around activities.

As the kind of tasks meant to be run on an interactive facility are “bleeding-
edge tasks” (debugging code, optimizing calibration cuts, and so on) they are
likely to be unstable and to cause instability to the system they are running on:
for this reason it would be better to keep the so-called interactive user analysis
physically close to the physicist, as technical support from the facility system
administrator would be faster and more effective.

Other points for keeping this kind of analysis local are facility scalability and
customization: an interactive facility close to physicists also means that system ad-
ministrators can fine-tune the facility features in order to match the exact physi-
cists requests as much as possible.

These are the reasons why such facilities are becoming more and more pop-
ular outside CERN: CERN Analysis Facility (CAF) is just the first example of a
PROOF facility for interactive analysis, but its dimensions are unlikely to satisfy
the need of every ALICE user in the world. Since it is clear and commonly under-
stood the need for a federal model of interactive analysis data facilities, we can
skip to the next point: CPU cores and memories must be dedicated in delocalized
centres, which can not always afford the cost of buying new multi-core machines
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and maintain them.
Even in the case an institute can afford the cost for new machines and the

corresponding ancillary resources (network infrastructures, system administra-
tors, racks, storage, and so on) we should note that a local analysis facility is a
waste of resources: intrinsically, an interactive analysis facility is used only when
requested, so that resources are idle most of the time. By considering that these
facilities are and will be localized there are particular times when physicists are
supposed to sleep or take a rest, so that we expect the CPUs to be mostly idle dur-
ing the night and the weekends. This discussion cannot obviously be extended
to the case the facility is used by many people all around the world that work in
many different timezones, such as the CAF (that is an exception to this general
rule).

For these reasons alternatives to buying new machines had to be developed:
if buying new machines is unfeasible, computing centres should use the existing
machines. If the existing machines are Grid-dedicated, resources must be shared
somehow between the Grid and the interactive analysis by considering the fol-
lowing guidelines.

• Promptness. When the physicist log into the system and asks for computa-
tional power, it should be given immediately: this means that resources are
yielded to the physicist with an acceptable delay (i.e., in less than 5 min-
utes).

• Transparency for the physicist. physicists should not need to know that
the resources they are using are shared with the Grid: interactive jobs
should run on the facility with no or little modification, and they should
be able in principle to run some analysis the same way they do on a ded-
icated facility, without the need to explicitly ask for resources. Physicists
should also not need to know that they are actually running their tasks on
several computers: this layer of astraction is provided by PROOF and Ali-
Root, which requires no code changes with respect to local analysis, and
only minimal procedure changes.

• Transparency for the Grid. Grid jobs should not need to know that they
are sharing computing resources with interactive analysis tasks: Grid jobs
should run unmodified and shouldn’t notice the presence of concurrent in-
teractive tasks, apart from a temporary and unavoidable slow down.

• Sandboxing. Interactive jobs are error-prone and PROOF does not pro-
vide enough sandboxing apart from different machine privileges for each
user, because machines dedicated to interactive analysis are meant for trial-
and-error use cases. However, in a production Grid environment that must
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coexist with PROOF, sandboxing becomes a critical point: we definitely
do not want PROOF jobs errors to propagate to the whole system and af-
fect the performance (and in the worst case, the results) of Grid jobs. For
this reason we need sandboxing, that in our case means performance and
failures insulation between Grid and PROOF.

2.1.1 Making Grid and interactive analysis coexist

An overwiev of possible different solutions is discussed in this section by taking
into account the above guidelines.

2.1.1.1 Solutions for Tier-1s

If we want to make Grid and interactive jobs coexist on huge centres such as
Tier-1s we can use three different approaches (a static one, a dynamic one and a
semi-static one).

The static approach is to simply take out some machines from the Grid and
dedicate them to interactive analysis: this is the CAF approach adopted at CERN.

The semi-static one is pretty naïf and consists in configuring each machine
with dual-boot capabilities and reboot it with the proper configuration when
needed. This can be done on a Tier-1 because of the large number of cores1

(≈1000) and thus a large rate of finishing jobs: as all jobs on target machines ter-
minate, the machines are rebooted into a PROOF configuration. Even if PROOF
failures do not affect the Grid, there is a drawback: the delay between user
PROOF connection and effective availability of PROOF makes this approach non-
transparent and non-prompt for the user.

The dynamic approach consists in putting interactive daemons as high priority
Grid jobs in the queue: as before, on a large site jobs finish continously, so that
free slots are occupied on demand by PROOF workers. This approach differs
from the semi-static one because there is no need to reboot machines, and, as a
consequence, there is no need to wait for all jobs on each machine to terminate
before rebooting. This approach is absolutely feasible and already adopted at
GSI[16, 17].

In principle jobs priority can be adjusted by common Unix scheduler com-
mands, and performance insulation can be obtained by physically separating local
disks assigned either to Grid or PROOF. It remains, though, the problem of mem-
ory allocation: with standard Unix kernels there is no possibility to choose which
is the maximum amount of memory assigned to a single process so if an interac-
tive task becomes uncontrollable and takes up all the memory it starts swapping

1We refer to cores and not CPUs because each CPU can have different number of cores.
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(a) Static LCG facility. (b) Dynamic VAF with variable resources.

Figure 2.1: Two schemes representing a standard Grid facility compared to a VAF where

both WN and the PROOF slave are installed on each physical machine and they share the

same resources, heterogeneously distributed by request. SEs are not represented in these

schemes.

and forces other Grid jobs to swap too; no perfect sandboxing is possible in this
case.

2.1.1.2 A solution for Tier-2s

As already mentioned, Tier-2 centres are smaller (≈100 cores) and more common
than Tier-1s: these are the centres where user analysis occurs.

When we look for an approach to allocate resources to interactive analysis
without affecting the Grid in Tier-2s we are strongly limited by the small number
of cores: any static approach is unfeasible on such centres, and the dynamic
approaches described for Tier-1s can not work here, as the rate of finishing jobs
is too low, introducing unacceptable delays (plus the time taken to reboot each
machine).

The computing centre in Torino is a Tier-2 centre for the ALICE experiment
with the need for interactive analysis but with not enough resources to dedicate:
this thesis is about the conception and the implementation of a VAF by using
a virtual machine for both Grid WN and PROOF slave on each same physical
machine in order to provide better sandboxing and better resource assignment
(not only CPU priority but memory too, as we are about to see) without requiring
any guest software modification. The VAF turns a typical AliEn Grid (§ 1.4.2.1)
from a static one into a dynamic one, as represented in Figure 2.1.
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2.1.2 Virtualization

Every time we talk about virtualization in computing we are referring to a layer
of astraction between different computer resources (either hardware or software,
or both), or between a computer resource and the user. A simple example comes
from the AliEn File Catalogue (FC) in the ALICE experiment, where a Logical
File Name (LFN) is a virtual filename that points to one or more Physical File
Names (PFNs) that actually refer to the real file. The LFN is virtual because it
does not actually exist but it provides a layer of abstraction between the file and
the user by hiding the exact file location to the latter.

The kind of virtualization needed by the VAF is called platform virtualization:
the guest operating system is installed onto a machine with virtual hardware re-
sources, not necessarily existing in the real world. A machine made up of virtual
resources is called a virtual machine. For example, two big files on the same
physical disk can be seen by the virtual machine as two different virtual disks.

Platform virtualization requires a Virtual Machine Monitor (VMM) to be in-
stalled on the physical machine: this is a piece of code (typically either a user-
space program or part of the host kernel) that coordinates the access to the re-
sources seen by each virtual machine. This is also called the hypervisor.

2.1.2.1 Reasons behind platform virtualization

There are many reasons why one may want to use virtualization software.

• Consistency. In a scenario where there must be many servers providing
different services it can be a waste of resources to use different machines
for each one, but unfeasible to keep all the services to the same host because
of software consistency. Let’s suppose that we must configure a web server
that needs, for compatibility reasons, an old version of certain libraries that
conflict with newer versions, unfortunately needed by the bleeding-edge
mail server we want to run on the same machine. By running two different
virtualized operating systems on the same physical machine we can have
both services up with only one machine by separately preserving software
consistency.

• Eased inspection. A virtual machine can be inspected more easily than a
physical one, because all virtual hardware is quite the same, and because
in case of unrecoverable disasters the virtual machine can be rebooted or
recreated without physically touching a single piece of hardware, enabling
technicians to do better remote support.

• Suspension. Since the hypervisor controls each virtual machine it knows
every time the state of each single piece of virtual hardware: a virtual ma-
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chine can be “frozen” (suspended) by saving the state of the operating sys-
tem along with the state of the whole virtual hardware: this becomes very
easy, since virtual hardware is indeed a piece of software.

• Portability and migration. The guest operating system deals with virtual
hardware, and the virtual hardware is supposed to be the same on each
physical machine running the same hypervisor. It is then possible to install
an operating system on a virtual machine and clone it onto another phys-
ical machine, or, using the suspension feature, it is even possible to easily
migrate a running virtual machine to a new physical machine.

• Platform emulation. Virtual hardware means emulated hardware: we can
run operating systems designed for CPU architectures different from the
physical one. Emulating the CPU usually introduces a big overhead that
drastically drops performance. This overhead is almost not noticeable if
the current physical CPU is much faster than the CPU we are emulating,
as it is the case in the most common application of platform emulation:
running old game consoles on modern domestic personal computers.

• Resource access control. The hypervisor can decide what (and which
amount of) physical hardware resources can be seen as virtual resources by
the guest operating system. Thus, the hypervisor can slow down a given
virtual machine by silently eroding resources currently assigned to it, or
it can deny the access to a specific piece of hardware by a certain guest
operating system: this is, for instance, the case of the famous Playstation
3 game console, that can run another operating system in addition to its
default one, but only on top of an hypervisor that inhibites, for instance,
the usage of video acceleration to decode Blu-Ray discs in order to prevent
piracy.

• High-Availability (HA) and disaster recovery. Virtual resources never fail,
but real hardware does. It is possible to use migration to move a virtual ma-
chine running on defective hardware to a working one. It is even possible,
by using hypervisor’s resource access control, to run every service in a dat-
acenter on a so-called “computing cloud” where the system administrator
needn’t worry about the exact correspondance between physical and virtual
machines: if a physical machine fails, the cloud should be able to squeeze
VMs running on healthy hardware to make room for the migration of VMs
running on defective hardware. This is how behaves a commercial solution
like the well-known VMware Infrastructure.
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2.1.2.2 Full virtualization and paravirtualization

Platform virtualization has been presented so far as something that can be achieve
without the guest operating system being “conscious” of virtualization, i.e.: the
guest operating system should see its assigned virtual resources without knowing
they are actually not real, and should behave just like running on real hardware.

However, there are many performance-related issues that arise when putting
additional layers of abstraction between the guest operating system and the phys-
ical pieces of hardware: this is when the difference between full virtualization and
paravirtualization becomes important.

In 1974, Popek and Goldberg[22] formally classified the instruction sets of an
architecture into two categories and defined the three goals for a virtual machine
architecture.

Generally speaking, each processor’s instruction can be inserted into one of
the following two categories.

1. Privileged instructions, which can cause a trap when executed in user
mode: in a trap, the program we are running in user mode raises an instruc-
tion captured by the processor that switches the execution in the so-called
system (or kernel) mode, losing the control of execution and yielding it to
the operating system.

2. Sensitive instructions, which change the underlying resources (control
sensitive) or strictly depend on underlying resources variation (behavior sen-
sitive).

According to Popek and Goldberg the virtualization process should match
three goals.

1. Equivalence. The VM should behave just like ordinary hardware.

2. Resource control. The hypervisor (or VMM) should be in complete control
of any virtualized resource: it should always be aware of any access to the
resources and it should be the one and only which decides how and when
assign resources to the VMs.

3. Efficiency. The hypervisor should be involved as little as possible while
executing user space code (our ordinary programs), i.e.: most instructions
should be passed as-is to the physical cores without intermediation.

They also demonstrated that virtualization of an architecture is always possi-
ble when its sensitive instructions are a subset of the privileged ones: this basi-
cally means that any instruction that causes a change on the underlying resources
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should cause a trap, in order to make the VMM aware of the changes and finally
in order to satisfy resource control by the VMM.

If every architecture was developed according to Popek and Goldberg’s state-
ments we wouldn’t have to worry about the efficiency of our code. Unfortunately,
the architecture we are going to emulate (x86 architecture, also known as IA-32,
by Intel) does not match the required statements: there are many IA-32 instruc-
tions that are sensitive but unprivileged (we call them critical instructions), making
very difficult for the VMM to be aware of resources changing without significantly
slowing down code execution (no more efficiency) and exposing the fact that re-
sources are virtualized to the guest OS (no more equivalence): in short, critical
instructions do violate each statement.

Since IA-32 is the most widespread architecture in the world, various tech-
nologies were developed and improved in order to deal with critical instructions.

The first approach is to capture every single critical instruction and dynami-
cally rewrite it by using privileged instructions. However this approach requires
the code to be constantly monitored, and memory too, because when the guest
operating system tries to read a page where the code was dynamically rewritten
the VMM should provide the original, non-rewritten memory page. This approach
dramatically slows down code execution.

The second approach is to act at hardware level: every sufficiently modern
IA-32 CPU has some virtualization extensions that keep the virtual machine state
inside the CPU, so that “code rewriting” is done in the latter’s registers at hard-
ware level, and software hypervisor is not aware of that. Intel released this tech-
nology as Intel VT-x[21], while AMD called it AMD-V[1]. These technologies act
in fact as an hardware acceleration for the software hypervisor. However, for in-
structions that actually affect the system (such as I/O and memory changes), no
hardware acceleration is possible and the software hypervisor must be notified of
that, so a little performance loss, that becomes relevant when doing essentially
I/O, is to be expected.

The so-called full virtualization typically uses one of these two approaches,
preferably the second one when underlying CPUs support hardware virtualiza-
tion, and the first one as a fall-back solution: this is what VMware does. Full
virtualization can be thought nearly a synonim of emulation in our scope: the
guest operating system runs unmodified and does not have the perception of be-
ing virtualized. The main advantages of this approach is that you don’t need
special versions of the operating system to do virtualization, and that you can, in
principle, emulate any architecture you want over any other architecture: some-
times, when the emulated architecture is not available (because it is a legacy
architecture not developed anymore, or because you don’t have the possibility to
access that architecture easily), full virtualization becomes useful. However, as
stated before, we expect a performance loss that it is not relevant if emulating old
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consolles, but when virtualizing HPC applications such as HEP ones we are going
to emulate, squeezing out every single speed improvement becomes critical, even
from the economic point of view.

For these efficiency reasons there’s a third approach that is called paravirtu-
alization, the approach we are going to use for the implementation of the VAF.
With this kind of virtualization code rewriting is delegated to the guest operating
system, which then has to be aware of being virtualized and should be modified in
order to handle code rewriting. The hypervisor can be taught to completely trust
the modified guest kernel and expect it to do all the code rewriting stuff with-
out even checking if every critical instruction is detected. Hardware acceleration
technologies are also used with this approach. This method of letting the guest
operating system modify the code to be executed by the hardware (combined
with hardware acceleration technologies) is the fastest one, since the hypervi-
sor doesn’t have to translate raw code anymore, because the modified guest OS
knows when exactly the code needs to be translated. We expect the paravirtual-
ization approach to have zero impact on CPU-bound tasks, and we will see later
that our expectations are fulfilled.

We finally note that paravirtualization does not fully conform with Popek and
Goldberg’s rules, because the guest OS knows that it is being virtualized, but the
single user-space programs do not need any modification and are not aware of
virtualization, so we can say that, by relaxing Popek and Goldberg’s statements,
paravirtualization still complies with them.

2.1.2.3 The Xen hypervisor

Xen is a virtualization platform that provides all the features we need to imple-
ment the VAF. It is an open-source and free VMM for Linux with the ability to
paravirtualize properly modified Linux kernels.

Xen is developed by XenSource, acquired by Citrix systems in late 2007. Citrix
started developing commercial virtualization solutions based on Xen (namely the
XenServer Standard and Enterprise editions). From early February 2009 Citrix
released its XenServer commercial product free of charge (but not open-source)
with a license that allows deployment of an unlimited number of machines.

We are going to use Xen as a paravirtualization hypervisor, but it is also able
to run in the so-called Xen HVM mode, just like other tools like VMware, making
it capable of fully virtualizing unmodified operating systems by taking advantage
of CPU hardware acceleration.

Xen has a layered structure. When booting the physical machine, the Xen
hypervisor is first loaded: then, it takes care of managing resources between
the other machines, called in Xen terminology domains. There’s one privileged
domain called dom0, which can be seen as the physical machine itself: the dom0
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can access hardware resources directly. Any other domain is called domU, or
unprivileged domain: these domains are the actual VMs.

Xen has its own process scheduler that schedules VMs just as an ordinary
scheduler does with processes. With older Xen schedulers there was a strict cor-
respondence between each physical CPU and VCPU, and a certain number of
VCPUs could be “pinned” (assigned) to each VM: for instance, in a system with
8 CPUs and two VMs one could assign 2 CPUs to a VM and 6 CPUs to the other
one. The new scheduler (called credit scheduler) works with priorities (which can
be seen as assigning an “amount of CPU”) and does not make correspondence
between physical CPUs and VCPUs.

Almost every hypervisor is capable of assigning a certain “amount” of CPU to
its virtual machines; Xen controls the “amount” of CPU with two per-VM param-
eters: the cap and the weight.

The cap sets the maximum percentage of CPU (or CPU efficiency, calculated
as the fraction of real time not spent in idle cycles) that a VM can use: for in-
stance, cap=800 means that the VM can use the maximum amount of 800% CPU
efficiency, that is eight cores. It is even possible to assign a fractionary amount of
CPUs to a VM (such as cap=50%, that means “half” CPU), but this is proved to
cause problems in timing applications (see § B.2). Differently from older sched-
ulers, in this case in a system with 8 CPUs and two VMs we can assign 8 CPUs to
each machine (but no more than the number of CPUs on that system), because
the cap is the maximum amount of CPU efficiency that can be used, and a VM
is now capable of using every core when the other one is idle without having to
manually change CPU pinning.

The weight is the relative priority of a VM with respect to the other ones: it
can be seen as a hypervisor-level version of the Unix nice command. Priority is
relative, meaning that, on equal terms (same cap, same memory), a VM running
a CPU-bound job with weight=16 is eight times faster than the same host with
weight=2.

These two parameters can be changed dynamically, i.e. without rebooting
neither the hypervisor nor the single domUs: this was a required feature of the
VAF. By intelligently combining cap and weight we can, for instance, configure
an environment with two VMs where both have the same cap (set as the number
of cores) but different weight. The lower weight can be assigned to the LCG WN
and the higher weight to the PROOF slave: because the PROOF slave is mostly
idle, the WN takes up all the CPUs most of the time, but when PROOF is active it
has priority and it’s the one who takes almost all the CPUs.

We have not yet mentioned the most important feature of the Xen hypervisor:
almost any hypervisor is capable of dynamically changing CPU resources, but
Xen is also capable of changing assigned system memory dynamically, resulting in
maximizing the usage of every resource in the system and solving the problem
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of underutilized resources. In terms of costs, we don’t need twice the RAM as
before to run two VMs on the same machine: we simply take the RAM from one
machine when it’s idle, and give it to the other one.

Since Grid nodes are always busy, if we subtract RAM from such nodes disk
swap usage occurs. This fact has a big impact on Grid performances, but the
slowdown is expected to last just as long as the interactive job is active – that is, a
very small fraction of time of the Grid jobs. In principle we don’t care about Grid
slowdown, but surely we don’t want that issue to propagate to the interactive
node: since heavily swapping affects I/O, we will demonstrate that by physically
separating disks we can obtain almost perfect performances isolation.

2.2 Virtualization feasibility benchmarks

Given two same-equipped machines we install and configure a paravirtualized
host on one of them. The paravirtalized host is configured to use almost all the
physical resources, leaving the least resources for the hypervisor (dom0).

By running the same suite of benckmarks on the physical host and on the
paravirtualized one we shall be able to estimate the latter’s performance loss,
and finally if it is feasible or not to virtualize a HPC/HEP application.

The following types of benchmark will be run:

• SysBench: benchmarks on specific tasks (CPU, threads, mutexes, memory,
disk I/O, MySQL transactions);

• Geant4 Monte Carlo: a real use case benchmark.

Specific-task benchmarks makes us able to know where exactly the perfor-
mance loss is, while the Geant4 Monte Carlo benchmark, that makes a balanced
use of each resource, will tell us whether a single task’s performance loss is neg-
ligible or an effective bottleneck for real use.2

Please note that the Monte Carlo used in these tests is CPU bound, while there
may be other simulations that are I/O bound.

2.2.1 Machines and operating system configuration

Head node is not relevant in these tests. The configuration for slave machines
follows.

2At http://www.bullopensource.org/xen/benchs.html other interesting Xen bench-

marks can be found, but at the time of writing our tests are more complete.

http://www.bullopensource.org/xen/benchs.html
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• Two HP ProLiant quad-core 2.33 GHz Intel CPUs (8 cores total)

• 8 GiB RAM

• Two 1000BASE-T (“gigabit”) Ethernet network interfaces

• Two 140 GiB disks in Redundant Array of Inexpensive Disks (RAID) mirror-
ing (RAID-1)

Linux CentOS 5.1 has been chosen for its rich Xen support. CentOS is a
Linux distribution both free and open, and was developed to maintain binary
compatibility with the commercial Red Hat Enterprise Linux. The commercial
support makes Xen suitable for professional use, while its open source nature
enabled us to modify and add code if needed: this aspect will be useful later.

Initial installations were performed on Ubuntu 7.10 Server, but the distribu-
tion was abandoned due to a poor Xen support. Moreover, the Ubuntu Team is
officially supporting Kernel-based Virtual Machine (KVM) virtualization but not
Xen paravirtualization starting from Hardy Heron (8.04)3. However, a Debian-
based Linux distribution like Ubuntu will be taken into consideration for future
installations because of a much easier package manager.

Some relevant operating system data:

• Kernel versions:

– 2.6.18-53.el5xen on dom0 and domU

– 2.6.18-53.el5PAE on the physical host

• Xen version: 3.0

• Xen scheduler: SMP Credit Scheduler (credit)4

2.2.2 SysBench benchmarks

SysBench performs several kinds of benchmarks. SysBench has been chosen over
other free and open benchmark solutions because it is very fast and easy to com-
pile (it does not require “exotic” mathematical libraries, as many other bench-
marks do) and because it is scalable, i.e. it is capable of spawning different threads
(user-selectable) and to divide the task over them.

Although SysBench was primarily developed to test a system that has to run
a database server (such as MySQL), it has been chosen over other more generic

3https://wiki.ubuntu.com/HardyHeron/Alpha4#Virtualization
4Obtained with the command xm dmesg|grep sched on dom0.

https://wiki.ubuntu.com/HardyHeron/Alpha4#Virtualization
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benchmarks because it is multithreading: this feature enables us to see how the
time to complete a task changes by changing the number of threads spawned5.

2.2.2.1 CPU benchmark

This benchmark stresses the CPU with an algorithm that determines if a number
between 1 and a maximum given (20000 in this case) is a prime number; this al-
gorithm can scale by dividing its job into parallel threads. The number of threads
is configurable: we run the test 64 times, from 1 to 64 threads.

Since the workload is balanced between each thread, we are expecting that
there is an optimal number of threads, corresponding to the number of (V)CPUs,
which minimizes the execution time. We also expect that there will be no rele-
vant performance loss, since each VCPU is directly seen by the virtual machine
without any architecture emulation: in other words, it is paravirtualized, not fully
virtualized.

As expected, by looking at the plots (Figure 2.2, Figure 2.3) we note that the
minimum time is reached at the number of 8 threads, that is the number of avail-
able cores; moreover, the two graphs are roughly overlapping, apart from some
peaks limited under 15% (Figure 2.4). These differences can be explained by
simply considering that in Xen there is no exact correspondence between virtual
and physical CPUs, and the job is moved from a CPU to another more often than
in an ordinary, non-virtualized Linux kernel.

2.2.2.2 Threads benchmark

Threads benchmark is designed to evaluate scheduler’s performance: each thread
tries to access the same set of resources, each of them allowing only one thread
at a time. Threads are thus concurrent, and resources are called mutexes (from
mutual exclusion): these resources are locked and released as soon as possible in
this kind of test. More detauls about mutex access are found in § A.2.

The test was run with 1000 iterations and 8 mutexes, with an increasing
number of concurrent threads (from 1 to 16 with a step of 1, then from 16 to 128
with a step of 8).

What we clearly see (Figure 2.5, Figure 2.6, Figure 2.7) is that the SMP Cred-
its scheduler becomes really inefficient with more than six threads competing for
the same mutexes.

5At http://sysbench.sourceforge.net/docs/ the complete SysBench documentation

can be found.

http://sysbench.sourceforge.net/docs/
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Figure 2.2: CPU benchmark: execution time comparison between physical and virtual

host (lower is better).
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Figure 2.3: CPU benchmark: zoom-in showing the peaks of the paravirtualized host’s

execution time (lower is better).



2.2 – VIRTUALIZATION FEASIBILITY BENCHMARKS 67

# of threads
0 10 20 30 40 50 60 70

re
la

ti
v

e
 t

im
e

 d
if

f.
 (

p
a

r-
p

h
y

)/
p

h
y

 [
%

]

0

2

4

6

8

10

12

14

CPU benchmark (difference)CPU benchmark (difference)

Figure 2.4: CPU benchmark: execution time difference percentage relative to the physi-

cal host.
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Figure 2.6: Threads benchmark: zoom-in showing the peaks of the paravirtualized host’s

execution time (lower is better).
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Figure 2.7: Threads benchmark: execution time difference percentage relative to the

physical host.
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2.2.2.3 Mutex benchmark

Unlike the threads benchmark, where many threads lock and immediately un-
lock a few resources, in this benchmark the lock is kept for a greater (even if
short) amount of time. The test with 4096 mutexes, 50000 locks per request and
10000 null iterations before effectively acquiring the lock.

Since threads have other things to do (i.e. the null iterations) apart from
locking resources, they are kept for a short period of time, which introduces less
competition than in threads benchmark. Since there is little competition and no
cooperation we expect a linear behavior: and that’s what we get (Figure 2.8,
Figure 2.9), where peaks are to be explained once again by the credit sched-
uler strategy, which can either affect thread scheduling or time measurements, or
both.
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Figure 2.8: Mutex benchmark: execution time comparison between physical and virtual

host (lower is better).

2.2.2.4 Memory benchmark

This test benchmarks memory operations. We run the test by writing 5 GiB of
memory with increasing number of threads (1 to 64 with a step of 1).

The results (Figure 2.10, Figure 2.11) show big performance loss: this hap-
pens because the hypervisor must apply an offset to each memory page request.
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Figure 2.9: Mutex benchmark: execution time difference percentage relative to the phys-

ical host.
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Figure 2.11: Memory writing benchmark: execution time difference percentage relative

to the physical host.

2.2.2.5 Database benckmark

This benchmark, also called On-Line Transaction Processing (OLTP) benchmark,
acts on a database by issuing several SQL queries within concurrent threads. In
our test, 105 SELECT queries are executed on 106 records. The table must be
created, then the test is executed, then the table is dropped.

Databases are the best testbed to benchmark memory and multithreading per-
formances, since they use a lot of disk space and memory and they deal with con-
current access by using many threads and mutexes, and they do not use the CPU
at full capacity (this fact can be seen by issuing a top command during test exe-
cution). The results of this test are useful to see the overall performance loss of
Xen, but may not be significant for a HEP application that only stresses memory,
disk and CPU and typically does not have any multithreaded features.

Since this test focuses on multithreading and concurrency shows performance
loss in the previous tests, we don’t expect great performances from the paravir-
tualized host. As a matter of facts we conclude that, by looking at the plots
(Figure 2.12, Figure 2.13), an increasing number of threads shows no relevant
performance loss, but on the countrary, an increasing number of threads access-
ing the same mutexes leads to relevant performance loss. A clear minimum can
be found with 8 threads in both paravirtualized and physical host.
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Figure 2.12: Database benchmark: execution time comparison between physical and

virtual host (lower is better).
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2.2.2.6 File I/O benchmark

File I/O has always been a performance issue for virtualized hosts: with these
tests, run on both a native host and a Xen domU, we are going to estimate how
much a Xen domU does worse than its native counterpart.

The test is subdivided into a sequential write benchmark and a sequential read
benchmark. “Sequential” here means that data is read or written byte after byte,
as opposed to a “random” access mode. Both tests read or write a total of 5 GiB6

distributed in 128 files, 40 MiB each. On each run, 10 I/O workers (POSIX
threads, from the Unix point of view) are spawn: one for each core (there are
8 cores) plus a little bit “overcommitting” to make the test as Grid environment
like as possible.

Some tests are run on dom0s, others on domUs; when the test is done on a
domU, it obeys to the following guidelines.

• It’s the only domU running.

• domU has 7 GiB of RAM: this is extremely important, because more mem-
ory means more buffer cache and lower reading times.

• No other I/O intensive jobs are run neither on the domU nor on the hosting
dom0 in order to avoid interference.

The write and read tests are performed as follows.

Write test

1. Sample files are written to the filesystem.

2. The sequential write test is repeated 5 times, collecting the timings in a file:
mean and standard deviation are computed from these values.

3. Sample files are removed from the filesystem.

Read test

1. Sample files are written to the filesystem.

2. The sequential read test is executed once to allow data caching: no timing
is collected at this point.

3. The sequential read test is then repeated 5 times, collecting the results in a
file: mean and standard deviation are computed from these values too.

61 GiB = 10243 bytes
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4. Sample files are removed from the filesystem.

The description of the tests done on native and virtual machines follows,
along with a description of the underlying filesystem layers and a comment on
their results.

Native host

• dom0 native (Table 2.1): direct disk I/O on an ext3 filesystem created on
a LVM logical volume with RAID 0+1. Although this is supposed to be the
fastest configuration, the presence of RAID slightly slows down the write
process with respect to a domU with no RAID.

• dom0 remote NFS (Table 2.2): a NFS export is mounted from a remote
host on the same subnet (no NAT is performed).

Xen unprivileged guest

• domU NFS (Table 2.3, Table 2.4): a NFS export is mounted from a NFS
server listening on dom0, or from a NFS server listening onto an external
network (requiring NAT). The first test acts like a sort of a “loopback” and
its purpose is to measure if adding the layer of virtualization for disk access
is comparable to adding the layer of a remote storage. The test shows that
our hypothesis was true, since the results obtained in this case and in a
physical partition used as VBD are nearly identical.

For what concerns the remote NFS server we clearly see that, since NAT
adds one more layer of abstraction between the client and the server, slows
down performances by generating bigger packets: access to remote storage
should never be accessed through NAT.

• domU blkd (Table 2.5, Table 2.6): a native partition is used as a VBD;
a partition table is built on it and an ext3 partition is created and used.
This configuration is tested either in a RAID environment (two mirrored
– RAID 0+1 – disks) or with a single disk. In this case we compare two
identical situations where the sole difference is the presence or absence of
RAID: as we look at the results we see that RAID slightly slows down the
file I/O (but of course it can be useful for data integrity).

• domU img (Table 2.7, Table 2.8): VBD is stored on a 20 GiB file located
on dom0’s filesystem, that is formatted either as ext3 or XFS, to test filesys-
tem performance issues with very big files. No disk array (i.e., no RAID)
is used here. The first thing we observe is that having the virtual machine
disk on files dramatically cuts down performance (up to three times slower
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that any other tested configuration in writing), while a positive feature is
the improved portability and easier migration; however, we are not inter-
ested in these features. XFS deals much better with very big files than ext3
in their default configuration (4 KiB, or 4096 bytes block size). Proba-
bly the maximum block size (64 KiB for XFS, 8 KiB for ext3) would have
been more appropriate, but this value should be choosen accordingly to the
maximum memory page size on the current architecture (that is, 4 KiB on
IA-32). Moreover, it was impossible to configure XFS with bigger blocks
way because block size is a hard coded value in standard CentOS kernel
XFS module (which is not fully supported, ant it’s even not present in the
default installation).

Results are represented in Figure 2.14. The conclusions of these tests are very
clear: we are going to use physical partitions as VBDs for our virtual machines,
since it is the fastest and most feasible method, even if it lacks flexibility of mi-
gration (but again, we are not interested in such a capability). Even if there’s
a performance loss due to file access with respect to the physical situation we
should consider that many I/O operations are to and from remote storage (in the
Grid), and are mainly CPU-bound and not I/O bound.

# read [s] write [s]

0 2.1081 91.3679

1 2.0814 90.3059

2 2.1985 95.6482

3 2.4558 92.1826

4 2.1373 93.4190

Mean 2.1962±0.1515 92.5847±2.0565

Table 2.1: File I/O test results on a native (i.e., non virtualized) dom0.

2.2.3 Geant4 benchmark

This benchmark measures the real time taken to complete a medical physics sim-
ulation that uses the Geant4 framework[2]. Since Monte Carlo simulations gen-
erate random events, simple parallelization can be achieved by contemporarily
launching eight instances of the same simulation.

The simulation is being currently developed by Andrea Attili and Faiza Bour-
haleb in the contest of the INFN-TPS project[18].
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# read [s] write [s]

0 2.2330 128.8870

1 2.0375 124.9416

2 2.1855 124.6543

3 2.1780 126.1185

4 2.1003 128.0597

Mean 2.1469±0.0775 126.5322±1.8779

Table 2.2: File I/O test results on a dom0 mounting a remote NFS export on the same

local network.

# read [s] write [s]

0 11.4913 107.5554

1 10.2563 103.7454

2 11.3242 99.6695

3 11.4358 96.2365

4 10.0555 105.7627

Mean 10.9126±0.6970 102.5939±4.6085

Table 2.3: File I/O test results on a domU mounting a NFS exported from its dom0.

# read [s] write [s]

0 9.2514 148.1351

1 9.4769 148.1883

2 10.1800 147.8830

3 9.3267 147.8920

4 9.8397 146.8373

Mean 9.6149±0.3886 147.7871±0.5487

Table 2.4: File I/O test results on a domU mounting a remote NFS export on an external

network that requires NAT.
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# read [s] write [s]

0 11.4188 97.4485

1 10.7277 97.9478

2 11.1306 97.5696

3 10.5785 98.6422

4 10.7937 98.1198

Mean 10.9299±0.3399 97.9456±0.4754

Table 2.5: File I/O test results on a domU using an entire physical partition as a VBD.

The physical partition runs on a hardware RAID 0+1.

# read [s] write [s]

0 11.4027 77.7030

1 11.1304 77.9048

2 11.0184 78.0775

3 10.7040 79.3414

4 11.0898 79.1975

Mean 11.0691±0.2507 78.4448±0.7660

Table 2.6: File I/O test results on a domU using an entire physical partition as a VBD.

No RAID is active for the physical partition.

# read [s] write [s]

0 11.1148 374.2615

1 10.7136 394.2198

2 11.1170 448.6667

3 11.0762 438.3493

4 11.0046 465.7587

Mean 11.0052±0.1693 424.2512±38.4662

Table 2.7: File I/O test results on a domU using an image file on dom0 as VBD. The

filesystem on dom0 is ext3.



78 FEASIBILITY OF A VIRTUAL ANALYSIS FACILITY

# read [s] write [s]

0 10.8362 241.4401

1 11.2859 322.0828

2 10.9252 291.5342

3 10.5696 286.1381

4 11.4289 295.4730

Mean 11.0092±0.3475 287.3336±29.1507

Table 2.8: File I/O test results on a domU using an image file on dom0 as VBD. The

filesystem on dom0 is XFS.
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Figure 2.14: File I/O test results (lower is better).
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We have slightly modified the code in order to choose the output file and
to explicitly set the random seed: this feature is fundamental to achieve repro-
ducibility and therefore comparability, because we are assured that exactly the
same code is executed through the whole simulation, but most importantly be-
cause time differences up to ∼10% may occur with randomly choosen seeds, as
measured by a previous test with the original version of the simulations, that used
the return value of the C function time() as a seed.

Results are reported in Table 2.9(a), (b) and (c). As we can see, in a simula-
tion that is essentially CPU-bound, time difference is negligible. We can say that
the simulation is CPU-bound because in ∼ 30 hours of eight simulations running
parallely only 8 GiB of data are produced. We conclude that in a real, CPU-bound
use case, there’s no difference between running the task on a physical or a virtual
machine, stating once again that virtualizing computing resources is feasible from
the performance point of view.

The scripts written to launch and control multiple parallel instances of the
simulation can be found in § E.1.1 and § E.1.2.

2.3 Real-time monitoring with dynamic resources reallo-

cation

2.3.1 Synopsis

2.3.1.1 Resources erosion vs. suspension

The use case of the VAF consists on tasks that use a big amount of memory and
CPUs at their full capacity, both on the Grid and the PROOF side: the prototype
will consist of two VMs, one for the Grid WN and one for the PROOF slave.
Once the prototype is complete we shall be able to reallocate resources from
one machine to the other one with no impact on system stability. Resources can
be reallocated either dynamically, with both guests running, or by temporarily
suspending the unused guest.

Dynamic allocation consists in eroding both memory and CPU from a running
guest, without rebooting it, and assigning them to the other one: as we have al-
ready seen, Xen is capable of dynamically moving memory, while other solutions
are not (i.e. VMware Server).

An alternative to dynamic allocation is to fully suspend a VM and then re-
suming the other one. Although this sounds appealing, primarily because no
memory erosion and no intensive disk swap usage occur, we should keep in mind
that running jobs on a Grid need to access remote data located on servers that
are not under our control: suspending a VM while a remote transaction is in
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# [hr:min:s]

1 29:00:49

2 28:26:54

3 28:03:40

4 29:09:33

5 28:50:46

6 28:19:00

7 28:40:18

8 29:20:41

avg 28:43:58

std 00:26:25

(a) Physical machine.

# [hr:min:s]

1 28:35:39

2 28:41:02

3 28:03:57

4 28:27:22

5 28:39:33

6 28:06:07

7 28:40:53

8 28:31:05

avg 28:28:12

std 00:15:06

(b) Virtual machine.

Overall time difference [hr:min:s] 02:06:03

Mean time difference [hr:min:s] 00:15:45 ± 00:30:25

Diff. relative to phys. machine time 0.91%

Total GEANT4 events generated 200000

Per-instance events 25000

Time difference per event [s] 0.04 ± 0.07

(c) Summary and comparison.

Table 2.9: Time taken to complete Geant4 simulation on each core on the physical and

the virtual machine.
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progress could easily lead to job crash, unexpected results or even data loss. One
could code jobs that are aware of transaction interruption (i.e., if a remote file
or database operation is interrupted, both local client and remote server should
be able to recover the interrupted transaction somehow.), but existing simulation
and reconstruction programs are mostly unaware of that, thus the better solution
under a practical point of view seems to be the VM slowdown, not the suspension,
even if under the computing point of view the latter is certainly more efficient.

2.3.1.2 Purposes of performance monitoring

We decide to test the feasibility of dynamic allocation. The first issue we want
to measure is how much time is spent in reallocating memory: it certainly takes
some time for a VM we want to slow down to move most of its RAM pages into
a swap space, and viceversa, and it should be a small amount of time in order to
be hypothetically driven on demand.

Another issue is stability: we want to know how much a job is slowed down,
and last but not least if it is slowed down to “death” or not – in other words, if the
running jobs crash or not if subjected to memory and CPU erosion, particularly
during the transition phase.

Also, from the Linux point of view, after this test we should be able to better
understant the Linux memory management and the AliRoot memory usage.

These are the questions we are going to answer with our test.

• How much does it take for a domU to yield or to gain memory?

• How much the jobs are slowed down by this resource erosion?

• Do the jobs crash?

• How does AliRoot use the memory?

• How does the Linux kernel memory manager behave?

2.3.2 Linux facilities to get system resources information

Before effectively describing our tests, a description of the Linux facilities used to
monitor system performance in real time follows.

There are different approaches to system and processes monitoring under
Linux. Since process monitoring is generally a resource-consuming task a spe-
cial procedure has been developed by combining a proper hardware extension, a
Linux kernel patch and a user space program: the kernel framework and the user
space tools are called perfmon2[12].
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perfmon2 is an unobtrousive approach to performance monitoring, because
on dedicated hardware (namely, Itanium/IA-64) the monitoring task is executed
by a special CPU extension called PMU: in this case, no performance loss oc-
curs at all while monitoring resources usage. However, since PMUs are not
available for older hardware (for example, IA-32), perfmon2 is capable of mon-
itoring performance in software mode with only a negligible impact on system
performance[15].

However, perfmon2 can not be used in our tests, because there is no way a
VMs can access the PMU. Without hardware extensions it can be used, but a
patch is available only for kernel versions greater than 2.6.24, but Xen were only
available for 2.6.18 at the time of the test.

Another approach is to periodically read the Linux proc filesystem to gather
system information. The Linux proc filesystem is a virtual filesystem that con-
tains files with information (usually in text format) about currently used system
resources and running processes. Each process has its own subdirectory with files
holding information about its priority, CPU usage, environment variables, and so
on. More information about the proc filesystem can be found in § B.1.

2.3.3 Tests details

Doing such a test requires:

• an AliRoot simulation that does exactly the same things every time is run;

• a script to periodically yield/take resources from the domU;

• a script to monitor the system resources usage on domU;

• a simple text-based interface to control the background simulations and to
collect data from monitor.

2.3.3.1 The AliRoot simulation and event timing

The AliRoot simulation is controlled by a configuration file that essentially tells
the framework (see § 1.3.1.1) to simulate a pp collision. Each instance is laun-
ched by a shell script (see § E.2.4).

No data is received or sent through the network and output files are relatively
small, making this simulation CPU bound and not I/O bound when resources are
fully available to the VM (while we expect it to suddenly become I/O bound when
swap heavy occurs).

The need for running several instances occurs because AliRoot uses only one
core. To make AliRoot execute exactly the same instructions every time we set
the random seed to a known number that does never change.
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Because AliRoot uses a great amount of memory we should assure that swap
does not occur with the maximum memory set for the VM and the number of
instances we’d like to run: this is the situation if we decide to launch four instances
with 3.5 GiB RAM and a cap of 400. No other VMs are running on the same
physical machine, so the relative weight is not an important parameter.

This AliRoot simulation can be run with different number of events per job to
collect different kinds of information.

• A job with only one event can tell us the cumulative time to load AliRoot,
perform the event simulation and write data to disk: the average real time
to complete is about one minute and a half (with resources fully available to
the VM). Such a job is put into an infinite loop that continuously relaunches
the simulation when one has finished, writing to a file when the simulation
exited and how long did it run. Thus, this test tells us how long a simulation
takes to complete with a different amount of resources available.

• A job with a greater number of events stays in memory (RAM and swap)
for longer, giving us information about AliRoot and Linux stability and Ali-
Root memory usage.

Each instance is run in a separate screen to allow backgrounding for processes
possibly needing a tty. Event timing is appended in a separate file (see § C.1) for
each instance: the files are subsequently gathered together and merged.

2.3.3.2 Resource control on dom0

A shell script has been written to do resource control on the dom0. The script
periodically sets the available resources for each virtual guest. In our tests, the
configurations in Table 2.10 are chosen every two hours (7200 s). For more
details and the code, see § E.2.1.

2.3.3.3 Monitoring on domU

A bash script called Monitor.sh (see § E.2.3) is run in background along with
some AliRoot instances. It collects information about the system and the running
simulation jobs every five seconds. Every information is read from the proc
filesystem (see § B.1) and written on a file (see § C.2).

Note that a poll interval of less than five seconds interferes significantly with
system overall performance, because interpreted scripts are used and many Unix
utilities are launched during the execution.
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No. Mem [MiB] Cap [%]

1 3584 400

2 256 100

3 3584 400

4 256 100

5 1792 300

6 512 200

7 1792 300

8 512 200

Table 2.10: Configuration list from which the MoveResource script switches every two

hours.

2.3.3.4 The control interface: SimuPerfMon

A control interface named SimuPerfMon has been written to control simulation
jobs on domU, to avoid the repetitivity of some tasks. With this interface one can
launch and stop jobs, monitor running time and instances, clean up, collect and
archive data. Details about this interface can be found in § C.3.

2.3.3.5 Data processing

Every information collected by SimuPerfMon is finally plotted as a function of
time in three different plots:

• memory (total and used RAM, used swap, buffer cache, swap cache);

• CPU efficiency;

• event duration.

CPU efficiency is not directly measured; instead, it is calculated using the
following collected values.

• User time: the time spent by the CPU(s) to execute job’s instructions.

• System time or kernel time: the time the kernel worked upon the job’s
request. This is the case of I/O, for example: if the process wants to do I/O
asks the kernel to do that, so the time spent is accounted as system time,
not user time.
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• Real time: it is the total execution time, i.e. the difference between job’s
end and start timestamps. It can be interpreted as the sum of user, system
and idle time, where idle time is simply the time spent by the job in doing
nothing.

Mean CPU usage is calculated as follows (in percent):

mean_cpu_usage= 100×
user_time+ system_time

real_time

“Differential” CPU usage between two adjacent samplings is calculated as follows
(in percent):

diff_cpu_usagei = 100×
(usr_timei − usr_timei−1) + (sys_timei − sys_timei−1)

uptimei − uptimei−1

where all times must use the same unit of measurement.

2.3.4 Results, comments and conclusions

The following two tests are executed as described before. The only difference is
that the first test repeaditly runs four AliRoot instances with only one event each,
while the second test runs the same four instances for a large number of events:
since in the second test we are interested in stability, no event time is measured.

2.3.4.1 Event timing test

Results of this test are plotted in Figure 2.15 and Figure 2.16. Observations on
the plots follow.

Peaks in the CPU and memory plots. AliRoot instances are reloaded each time
the previous job has finished: this is why we have many peaks in the plots. Mem-
ory consumption rises when AliRoot is loaded, and it drastically falls down when
it is terminated. The same thing happens with CPU usage because reloading Ali-
Root causes the reload of large amount of static data (i.e. calibration of detectors)
that does I/O without using the CPU: when data has finished loading (low CPU
usage) event simulation starts (full capacity CPU usage).

CPU usage The density of the magenta peaks (CPU usage by the AliRoot in-
stances) on the big plot shows that it is difficult for the processes to reach the cap
when memory is far below 3.5 GiB. This is due to the swap space usage: the more
swap is used (orange line), the more the AliRoot simulations become I/O bound.
The peak right after 32000 s is probably due to a glitch in the system interrupt
timer (see § B.2).
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Figure 2.15: Resources monitor plot with event timing.
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Figure 2.16: Memory monitor plot magnification that shows the time needed to yield

memory, i.e. to turn into a configuration with much less RAM.

Swap usage As expected, when eroding memory, the swap space usage in-
creases. In the second test we will see a less trivial result that occurs when giving
memory back.

Buffer cache usage Linux uses all the free RAM to cache read and written data
from system disks: caches are automatically invalidated (and consequently freed)
when an active process requests memory. The second test clearly shows it, but
in this case we can only see that the buffer cache drastically falls to zero when
reducing memory.

Event time With full memory resources (cap=400%, mem=3.5 GiB) and half
memory resources (cap=300%, mem=1.75 GiB) execution time depends more
on CPU than on memory: this means that swap pages are written but rarely or
never accessed. This is probabily due to AliRoot calibration data. When memory
is lower, execution time increases several times compared to the full resources
time (from 1600 to 2000 s compared to ∼100-120 s) because of the swap usage.
Jobs tremendously slow down, but they do never crash, even during transitions
from high to low resources, showing the stability of both the underlying operating
system facilities and the analysis and simulation framework.

Resources transition time The time for a VM to yield resources while jobs are
running can be estimated by magnifying the steepest transition (from 3.5 GiB to
256 MiB), as shown in the zoomed plot (Figure 2.16). The ramp lasts for at least
100 s before reaching the lowest limit. This low transition time is a very good
result because it is little enough to allow on-demand resources reallocation.
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2.3.4.2 Stability and memory management test

Results of this test are plotted in Figure 2.17. Observations on the plots follow.
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Figure 2.17: Resources monitor plot with no event timing.

CPU usage Since there are no repeated loadings and unloadings of AliRoot the
memory or swap are never cleared, so the swap space is used continuously with
low memory resources, causing less peaks and a CPU usage far below the cap.
Note that also in the maximum resources configuration window CPU usage falls
down when the buffer cache (purple line) cannot grow anymore, meaning that
there is some disk data that needs to be accessed often and cannot be cached. In
this case, the simulation becomes I/O bound for the disk data it needs to access,
not for the swap usage – that is zero (orange line), as one can easily see.

Swap usage and swap cache Swapped memory remains high, after the first
ramp, and never decreases: this is in part due to the swap cache, but mostly



2.3 – REAL-TIME MONITORING WITH DYNAMIC RESOURCES REALLOCATION 89

because there is a lot of data that AliRoot loads and never uses. With long runs,
the impact of unused calibration data on system memory and swap is evident.

Buffer cache. As noticed before, since many swap memory pages are never
invalidated, when restoring resources RAM memory becomes more and more
used, but this is not due to AliRoot itself : used memory grows as buffer cache
grows. Linux cleverly uses memory for speeding up data read and write, even if
these caching effects are not visible in the simulation used, because each piece of
data is read and written only once during the lifetime of the run.

Jobs stability The same four instances constantly run during all the test dura-
tion (16 hours), and they never crash.

2.3.4.3 Conclusions

These tests are very important to estimate the feasibility of the VAF. The only un-
clear point is the huge memory occupation by unused resources done by AliRoot,
but the overall results are positive: jobs never crash and Linux is a good choice for
its memory, cache and swap management. Moreover we don’t care about AliRoot
memory usage, because unused pages go to swap and they are never accessed,
by freeing the memory. We can safely conclude that a VAF is feasible for our
purposes.





Chapter 3

Working prototype of the Virtual

Analysis Facility

3.1 Prototype implementation

Since we have demonstrated that a VAF is feasible we are going to discuss the
implementation of a small (but scalable) VAF production prototype.

The main target of setting up a working prototype is to test if our analysis
facility works in a production environment, with both Grid and PROOF nodes
active. We will configure our facility by focusing on the ease of mainteinance and
quick scalability: in other words, it should be easy to add new machines and to
fix problems on existing ones.

3.1.1 Machines, network and storage

Our machines are four HP ProLiant DL360 servers with eight cores each, plus a
multi-purpose head node (IBM eServe) that hosts the ALICE software and runs
any other ancillary service. A picture of these machines inside a rack can be seen
in Figure 3.1.

Three of the ProLiants are equipped with 8 GiB RAM, while one has 16 GiB.
Each ProLiant has six SAS disk slots, two of which are filled with ∼140 GiB disks.
These disks are not in a RAID array: the first disk hosts the dom0 kernel and hy-
pervisor, plus the Grid VM with its swap partition, while the second disk hosts the
PROOF VM, again along with its swap partition. The main reason why the disks
are separated is to ensure performance insulation: when taking out resources
from one VM, it starts to swap, and if the other machine were on the same disk it
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would suffer from slowdowns in its I/O. Moreover, we are not interested in any
kind of data redundancy on the machines at this point of the implementation,
because important data is stored in dedicated storage facilities belonging to the
Grid, and if one of our disks fails we just replace it and reinstall the software
because we probably won’t have lost critical data.

Figure 3.1: Picture of the VAF machines in a rack: starting from the top, there’s the head

node (IBM eServe) and the four HP ProLiant “slaves”.

Our HP machines have two gigabit ethernet interfaces, plus a separated one
dedicated to a feature called iLO: by assigning an appropriate IP address and
connecting (via ssh) to iLO it is possible to see what happens on the machine
from a remote host as if there were a screen and a keyboard physically attached
to the server. iLO is also available when the server is turned off but powered,
so we can remotely control the boot sequence and configure machine parameters
such as RAID via a textual BIOS interface. An iLO web interface is also available.

Power supplies on our HP machines are fully redundant, i.e. there are two
power supplies each.

In our prototype each machine (both physical and virtual) is connected to a
non-dedicated switch; altogether the machines are part of a local network that
sees any other machine through NAT. NAT for the entire local network is done
by the head node. Having a non-dedicated switch and using NAT has a strong
impact on performances, but this is going to change in the near future.

The head node runs the following services for the network: IP gateway and
NAT, DNS, NTP, DHCP, web server, install server – including PXE boot server via
DHCP, and TFTP – and, of course, the most important one: PROOF master and
remote login for the users and administrators via ssh.
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3.1.2 Mass Linux installations

In our scenario we have got several identical virtual and physical hosts which
will act as computing nodes. Since we are building a prototype the machines are
a few, but in a hypothetical “real world” usage we may end up with dozens of
machines to maintain, so the prototype is built with scalability in mind. There are
at least three methods to face this situation.

The “manual” way As the name suggests, we may simply install each dom0
and domU “by hand”. In a large server room this means repeating the same steps
for partitioning, selecting packages, creating a root user, and so on. A KVM switch
needs also to be connected to the machine we need to control, and we need to be
physically close to the machine to perform the installation.

PXE and NFS root PXE is a technology developed by Intel and other hardware
vendors in order to provide a bootloader and a kernel image to boot via a net-
work, functioning as an extension of DHCP (which is used to assign the IP address
and tell that there is the possibility to boot from the network) and TFTP (which
is used to send files to the booting client).

NFS is the most common centralized and networked file system used in Unix,
because its protocol is simple and it is very easy and painless to configure. “NFS
root” means that each client’s root directory is mounted using NFS.

Using both PXE and NFS root one could configure a machine that does not
need any local disk to run – a so-called diskless machine. This kind of approach
seems appealing at first, because:

• all files of many machines are stored and managed once;

• no local disk is strictly required to run the system.

Indeed, it has been tried and several drawbacks emerged.

• Each machine requires a local space to store temporary files. This may be
achieved by mounting as ramdisks some directories as /tmp, but we don’t
want to waste RAM for that.

• NFS root and DHCP-at-boot are simple features but require kernel recompi-
lation, but compiling the Xen hypervisor and a Linux kernel that supports
Xen is a complicated task for a system administrator due to version match-
ings and patches. We prefer to use pre-compiled kernels because they are
easier to maintain and they can be updated by simply using a package man-
ager.
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Centralized installation system: Cobbler Since our machines have hard disks
we may think about the solution of centrally managing the installation and per-
machine customizations through a single server (the “install server”). Since we
use a Red Hat based Linux distribution (CentOS), the installation system (called
anaconda) supports a way to automatize every step of the installation procedure
through scripts named “kickstarts”. Through the install server we can reinstall an
operating system that gets broken for whatever reason without even logging on
the remote machine through remote control interfaces such as iLO.

Cobbler is an install server with plenty of interesting features: it does every-
thing it’s needed to boot, install and manage network installations. Cobbler itself
is only a bunch of command-line utilities and web configuration pages, but it has
the power to aggregate every feature we need. Once installed, Cobbler takes care
of:

• PXE for network installations;

• DHCP and DNS through various methods (either dhcpd+bind or dnsmasq);

• rsync for repositories mirroring and synchronization;

• a web interface from which we can access most of the functionalities (see
Figure 3.2).

There’s nothing particular in our Cobbler configuration: the only non-default
parameter is the DNS. For the DNS service we decided to use dnsmasq instead of
the more complicated and default bind.

Figure 3.2: Screenshot of the Cobbler web interface, showing the list of the machines

managed by Cobbler.



3.1 – PROTOTYPE IMPLEMENTATION 95

3.1.3 Monitoring and control interface

We are currently developing a monitoring and control web interface for the VAF.
There’s an online preliminary version that runs on secure HTTP (apache2 is used
as webserver).

The control interface is a web application built upon many technologies: GWT,
the Google Web Toolkit1, is the framework used to design the interface. Commu-
nications between the web application and the server occur through AJAX and
PHP technologies, in order to avoid web page reload as soon as data is updated.
A screenshot of the current interface can be seen in Figure 3.3.

Figure 3.3: Screenshot of the VAF monitor web interface, showing VMs grouped by their

dom0s. Data is dynamically updated every few seconds.

3.1.4 Scalla and PROOF configuration

The Scalla suite, also known as xrootd[10] is a software cluster architecture de-
signed to bring low-latency remote data access (via a daemon called xrootd) and
to develop a scalable storage solution (via cmsd, that recently replaced olbd).

Data from within ROOT is always accessed via the TFile class, which acts
as a wrapper on a more specific subclass dependant on the file access method.
If the file is to be obtained via a xrootd pool the TXNetFile[10] is the proper
interface, transparent to the user.

Outside ROOT there are other methods to access xrootd: the most com-
mon including the xrdcp command-line client, and a FUSE extension called
XrootdFS2 is currently under development.

Scalla/xrootd functionalities can be expanded by writing appropriate plugins,
including the PROOF daemon. The PROOF approach to parallelization is data-

1http://code.google.com/webtoolkit/
2http://wt2.slac.stanford.edu/xrootdfs/xrootdfs.html

http://code.google.com/webtoolkit/
http://wt2.slac.stanford.edu/xrootdfs/xrootdfs.html
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centric: this means that jobs are sent near the data they are going to process, not
vice-versa, optimizing network usage and reducing transfer times. PROOF was
(and still is) originally available as a standalone daemon (proofd), but using it as
a xrootd plugin provides better integration with the data-centric model, basically
because xrootd natively knows where its data is stored.

Configuring xrootd and cmsd for PROOF usage can be non-trivial: configura-
tion files descriptions follow. The entire configuration files are reported in § E.3.

3.1.4.1 xrootd, cmsd, PROOF configuration file

The main configuration file (vaf.cf in our case, see § E.3.1) is shared between
xrootd, cmsd and the PROOF plugin (libXrdProofd.so). Moreover, this file is
read by every machine in the network: for this reason it is possible to use if clauses
in order to activate certain configuration directives only on certain machines, or
for certain daemons (for instance, the PROOF plugin is loaded only if xrootd
reads the configuration file, but it is ignored by cmsd); wildcards can also be
used.

The configuration file for the xrootd daemon substantially specifies the ma-
chine proof.to.infn.it as PROOF master and xrootd redirector, loads the
PROOF plugin and specifies the paths that are part of the pool on each machine.

The cms.* directives specify various cmsd configuration parameters: we use
them to specify which machines can connect to the pool (the PROOF head node
and PROOF slaves only).

For the PROOF plugin we specify which version of ROOT will be used (the
trunk is the only version available for now, but there’s the possibility to add more
than one version that the user can choose) and the authentication method: GSI
authentication is used, as described later on. PROOF also needs a so-called “re-
source locator”: this is an external file (an example is shown in § E.3.2) that
specifies which hosts are available to the PROOF farm, and their type (master or
worker). Even if this resource locator is considered “static”, the file content is
actually read when a user connects to PROOF, so that there is no need to restart
xrootd in order to apply the new configuration.

3.1.4.2 Security through GSI authentication

GSI authentication is a form of authentication commonly used on the Grid that
needs the user who wants to authenticate to present a valid certificate (that is sort
of a “digital fingerprint” of the user) signed by a trusted certification authority,
and a key. Certificates and keys must be in a format specified by the X.509 ITU-T
standard; the key can be optionally locally encrypted using a passphrase.
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Once the user has unlocked its private key, authentication is performed; if
authentication succeeds, a proxy certificate signed with that key is created. The
proxy certificate has the same subject as the user certificate, but with a /CN=
proxy appended: they are temporary certificates used to authenticate on the
Grid without entering the passphrase every time.

Other forms of authentication could have been used (such as password au-
thentication), but GSI authentication has been chosen because physicists are al-
ready accustomed to it and because it is very secure, as long as the user keeps the
key encrypted and in a secure place: the need to have a key eliminates the com-
mon security problem of password authentication, say the user chooses a trivial
password easy to be found by a malicious user.

For instance, every physicist in ALICE that uses the Grid (or the CAF) knows
that the steps in order to authenticate are:

1. place usercert.pem and userkey.pem into ~/.globus directory and
make them readable only by the user3 (only the first time);

2. launch alien-token-init;

3. type in your passphrase to unlock the key;

4. start using ALICE services such as PROOF or aliensh.

To use GSI authentication we must first instruct PROOF to load the security
plugin libXrdSec.so, then configure the security plugin to use GSI authentica-
tion. When the user is authenticated, it must be assigned to a Unix user present
on every computer in the facility: in other words, there must be user mapping
between Grid users and local PROOF users.

User mapping can be statically done either by a file named grid-mapfile
(see § E.3.3), which must be present even when empty, or else xrootd fails to
load, or via a hardcoded mapping function (called the “gmapfun”), that can be
loaded externally by another plugin.

As external function we use the libXrdSecgsiGMAPLDAP.so plugin, which
simply calls the command-line utility ldapsearch that, given a certificate sub-
ject, searches for a corresponding user name on a LDAP server (in our case, the
AliEn LDAP server). The grid-mapfile has precedence over LDAP (and over
every other “gmapfun”). The configuration file can be found in § E.3.4.

Note that the token generated by alien-token-init is not propagated on
every PROOF slave, so it is impossible without workarounds to access files on the
AliEn File Catalogue (FC) (see § 1.4.2.1): we are currently working on a solution
for this problem.

3chmod -R 0400 ˜/.globus
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3.1.5 VAF command-line utilities

Some command-line utilities have been written to manage the VAF by only ac-
cessing the head node: they are shell scripts which take care of common oper-
ations like controlling Xen resources on the whole farm, defining and activating
resources profiles and controlling xrootd and cmsd daemons. These scripts use
SSH to automatically and transparently access the single machines, whose names
are in environment variables on the head node. A detailed description of these
utilities can be found in § D.

3.1.6 Documentation and user support

User and administrator documentation is being kept on a website4 as a Wiki
hosted on a CMS named DokuWiki5, because it is open-source, it does not need
any database configuration and it stores pages as text files readable by any text
editor.

3.2 Pre-production tests

At this point of the work we have tested the feasibility of the VAF approach in
some specific cases, and we have implemented a small but scalable prototype of
the VAF. By actually putting our virtual WNs into a standard Grid queue and
stressing the interactive VMs we can test the VAF in a real production environ-
ment, and finally state the feasibility of our approach in real use cases.

Four virtual Grid nodes are actually in the LCG queue since late December
2008. Only two Grid nodes were in production until late November 2008: this is
when the tests were done, so the Grid test with real jobs has been executed on
two machines only out of four total available machines.

3.2.1 Test generalities

We are going to execute different tests and measurements both on the PROOF
slaves and on the Grid WNs. These tests were executed in three different re-
sources profiles, that are manually choosen by the VafProfiles script, that give
the priority either to the PROOF node or to the Grid WN, as we are going to
discuss later in the results.

4http://newton.ph.unito.it/~berzano/w/doku.php?id=vaf:start
5http://www.dokuwiki.org

http://newton.ph.unito.it/~berzano/w/doku.php?id=vaf:start
http://www.dokuwiki.org
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3.2.1.1 Grid test

On the Grid nodes we execute tests with both real Grid jobs (mainly ALICE jobs)
and “fake loads”. Grid jobs are not under our control: the machines are in the
Grid queue and they just execute what they are told to run by the CE. We have
decided to run our tests in a period of time where ALICE jobs took most of the
time, with respect to other Grid VOs, and the WNs are never idle, in order to test
machine performances in the worst case. The “fake load” tests are actually not
Grid tests: a CPU-intensive job (a primality test done with SysBench) is executed
repeatedly in order to achieve intensive CPU usage.

Since real Grid jobs are very different in nature and execution time, no event
rate is measured for them. An “event rate” is measured for the primality test
instead, defined as the number of integers tested per second.

In real production Grid tests we also measure the number of jobs that fail to
finish correctly on virtual nodes to see if it is greater than average.

3.2.1.2 PROOF test

A generic PROOF analysis is launched interactively while Grid WNs are using
most of the system resources. Two different PROOF analysis are launched: one
analyzes 100 evenly distributed files on two machines (16 workers) with the real
Grid jobs; the other one analyzes 200 evenly distributed files on four machines
(32 workers) with the primality test. Event rate is measured three times then
averaged.

Data is evenly distributed across the nodes because of the data-centric nature
of PROOF: if we uniformly distribute data, then also CPU usage is uniformly
distributed. Since there are four machines, 50 files are stored on each one. These
files are the same ROOT file replicated several times, in order to avoid timing
inconsistencies because of different data on different machines.

3.2.2 Resource profiles and results

Results are plotted in Figure 3.4 (primality test on WNs) and Figure 3.5 (real Grid
jobs on WNs). In each barchart the fourth column represents the reference event
rate, that is the maximum event rate reached when no other load is run on the
other machine; this event rate is set equal to 1: any other event rate represented
there is normalized according to the reference event rate.

Since the primality test uses little memory, when shrinking the WN swap
does not occur. Resources profiles are activated via the VafProfile script (see
§ E.4.5). In their description we conventionally treat each physical host like the
only running guests on it were the PROOF node and the Grid WN, even if a small
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amount of resources (512 MiB of memory) should be assigned to the dom0 guest
too, that represents the physical host itself.

1. The “halfmem-proof-prio” profile gives half of the available memory to
each node. PROOF has eight times the priority (the weight) with respect to
the WN, and PROOF can use all the CPUs (cap=800%), while the WN only
one (cap=100%). PROOF is always idle, but when it requests CPU power
it behaves quite like it’s the only application running on the whole physical
machine, as we can see by looking at the first column of the plot.

2. The “half” profile is the same as before, but both machines have the same
priority: indeed, the bars in the second column are almost the same height,
proving that the Xen scheduler actually assigns about half CPU cycles each
VM.

3. The “proof” profile assigns most of the resources to interactive analysis:
PROOF is given ∼90% RAM and cap=800%, while WN is given ∼10%
RAM and only one CPU (cap=100%); moreover, PROOF has (as in the
“half” profile) eight times the priority with respect to the WN. This con-
figuration behaves quite like the first one: the only difference between the
two configurations is the memory assignment. By repeating this test with
different PROOF analysis we can use it to tune the memory to assign to our
analysis tasks: in our case we see that no more than 50% of total mem-
ory is needed, so the memory assigned with this profile is too much and
underutilized for this particular analysis task.

For what concerns the test with real Grid jobs (Figure 3.5), the main differ-
ence with respect to the primality test is that they use much memory, thus when
shrinking the WN swap does occur. Since the heterougeneous nature of Grid jobs,
no event rate could be measured for the WN in this case. Despite of swap space
usage, by comparing the green bars (those related to PROOF) with the ones on
Figure 3.4 we see almost no difference: it is worth underlining that this result is
obtained by physically using two different disks for the two VMs, and this result
states that with this method we really obtain complete performance isolation, as
we have been expecting.

3.2.2.1 PROOF scaling

An important and accessory measurement is made through our tests: by running
the same test while increasing each time the number of cores per node from
one to eight we measure the event rate (three times, then it’s averaged). The
results are plotted in Figure 3.6, where it’s rather evident how the event rate
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early until the number of workers reaches the maximum possible (one worker per core).

increases linearly while increasing the number of workers. No overbooking has
been considered in this test, i.e. no more than one worker per free core is used.

3.2.2.2 ALICE jobs CPU efficiency

The CPU efficiency of sole ALICE Grid jobs running on the two virtual WNs is
measured and then plotted on Figure 3.7 with a blue dot corresponding to when
the job finished its execution. Since each Grid job uses one core only the maxi-
mum CPU efficiency is 1. We measure CPU efficiency over a long period of time
(∼60 hours) while changing the underlying resources (as labelled on the plot).
Only the jobs that started and terminated inside the measurement window are
considered. We also should note that jobs not only from the ALICE VO were
executed during this period, but the vast majority were ALICE’s.

We note that the more swap is used, the more the jobs turn from CPU-bound
to I/O bound: this fact, in addition to the reduced cap to be shared by the same
number of jobs, increases the average time needed to complete each job (that can
be seen by the wider distribution of the blue dots) and decreases CPU efficiency.
This is clearly visible in the third resource configuration (512 MiB of RAM and
cap=100%).
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3.2.3 Storage methods comparison

A PROOF analysis task specific to ALICE has been run in order to compare two
different storage methods.

The commonly used storage method is the PROOF pool, where the PROOF
worker nodes are also part of a xrootd storage cluster not only for temporary
files, but to store data that is to be analyzed. The method used at CAF is to ask
the facility to “stage” (mirror locally) the data from the Grid storage: once the
staging step is completed, the analysis can be run6. Local storage is supposed
to be much faster than retrieving data from another SE, but maintaining a local
storage of disks in addition to the Tier-2 SE may be unfeasible (for economic
and administrative reasons): for these centres (just like Torino) it may be more
feasible for PROOF to access data directly from the local storage element, and
to possibly mirror there some data stored in some other place in the world that
needs to be locally analyzed.

In this test, these two different methods are compared. The tests are executed
three times: startup time and execution time are measured, then averaged. When
the local pool is used, data is evenly distributed.

As we can clearly see in the results (Table 3.1 and Figure 3.8), getting data
from the local SE is very slow (33.5× slower) compared to the local pool solution.
The issue is probably the slow network configuration of the current VAF proto-
type: SE is accessed behind NAT and VAF hosts are connected to a heavily-used
switch. This benchmark needs to be repeated with a better network configura-
tion, maybe with a dedicated access to the SE.

Startup [s] Duration [s] Total time [s]

PROOF pool 002.5± 0.1 024.3± 00.6 026.9± 00.6

Torino SE 204.0± 1.1 694.7± 20.8 898.7± 20.9

80.5× 28.5× 33.5×

Table 3.1: Time taken to complete the analysis with two different storage methods: the

PROOF pool and the SE. The last line shows how much accessing files on the SE is slower

than on the PROOF pool.

6Actually, with PROOF it’s possible to run the analysis even on partially-staged data.
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Chapter 4

PROOF use cases

4.1 Introduction

Although it should be clear that, in the ALICE computing model, the Grid is the
preferred solution for both event simulation and reconstruction, all user analysis
that comes after reconstruction can be done on PROOF.

After LHC runs and ALICE data acquisition, or after a simulation, the collected
“raw” data need to be reconstructed. The interface for reconstruction provided
by AliRoot consists of two classes: a steering class called AliReconstruction,
responsible of calling the methods of several specific classes for each detector
named Ali<DET>Reconstructor that inherit from the base class which is cal-
led AliReconstructor.

Output of a reconstruction are one or (usually) more ROOT files called Event
Summary Data (ESD), which are usually named AliESDs.root and subdivided
by number of run and number of job in several subdirectories.

User analysis is done on those ESDs: every relevant information to analyze the
events can be obtained from there. Since ESDs also contain information that is
not needed for every kind of analysis, a lightweight representation of the events
can be obtained by filtering only the needed ESD data and producing the so-
called Analysis Object Datasets (AODs): AOD files are usually called AliAODs.
root and they are smaller in size, reducing the memory needed to do repeated
analyses.

Although PROOF can be used to do virtually any kind of task, it was primarily
designed and thus tested in order to run user analysis on distributed ESDs or
AODs as well: these user analyses are called “analysis tasks”, and their respective
object-oriented implementation is the base class AliAnalysisTask.
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4.2 PROOFizing a task

In this section we will see how a generic task can be run on PROOF, and which
are the requirements in order to achieve task parallelization.

PROOF is not a tool that does real parallelization of a single task: on the
countrary it can run several tasks simultaneously instead of sequentially. In other
words, PROOF can parallelize all the kinds of tasks which solution can be formu-
lated as a set of independent subtasks (Figure 4.1): this kind of parallel comput-
ing is called embarrassing parallel.

Figure 4.1: Difference between sequential (local) and parallel (PROOF) data processing:

the comparison with the “unordered” processing is made to state that a requirement of

embarrassingly parallelizable tasks is that their final result should be independent on the

data processing order.

The file format used to hold events and analyses data is the standard ROOT
file format: this format is capable of holding in an efficient way instances of
every object (descendant of class TObject), an operation normally referred to as
serialization or marshalling.

Since several independent tasks are run simultaneously, each task produces
its own data: each PROOF worker is able to serialize output through the network
to the master, which then merges several outputs in a single stream that is finally
written on a ROOT file. ROOT is intelligent enough to use the right merging
method according to the type of data container (the class) of the output stream
– for instance, a TH1 or a TList have merging functions already implemented,
while custom classes should implement a Merge(TCollection*) method.
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ROOT provides a class as an interface for every analysis task that reads entries
from a TTree: this interface is called a TSelector[5]. An analysis written as
a TSelector descendant can be run both sequentially on a desktop computer,
or simultaneously on several PROOF workers, but the analysis code remains the
same and does not need any change. The user can choose at runtime whether to
run the analysis in local or on PROOF: this fact basically means that the physicist
shouldn’t make, in principle, any effort in order to port its code on an embarrass-
ing parallel environment, by gaining greater computing power without the need
to know a single complicated concept behind parallel computing.

As we have introduced before, the ALICE experiment Offline Framework pro-
vides a class for analysis called AliAnalysisTask[20]: every analysis task can
have several inputs and several outputs connected. Even if this class is more spe-
cific to the ALICE experiment, its behaviour is more general, since it provides the
possibility to process different inputs in other formats besides the TTree class.
The idea behind the AliAnalysisTask remains the same: analysis code written
for local usage should be re-used in PROOF without any modification.

As we are about to see, this is true for ESD processing but some code of
AliRoot still needs to be adapted in order to exploit PROOF functionalities: luckily
this is only a matter of implementation, not of design, since AliRoot’s object-
oriented features make it flexible enough for PROOF and any future evolution of
it.

4.3 Example use cases

Very specific user analyses are beyond the scope of this thesis; however, in the
following sections we will see the requirements of a task in order to be run on
PROOF, a basic example of distributions from an ESD and a filtering from ESD to
AOD via the PROOF located on the VAF.

4.3.1 Spectra from multiple ESDs

The first use case we analyze is an analysis task that reads several ESDs and
produces two distributions (transverse momentum, pt and energy) that are saved
in a single output file.

ESD files are taken from an official Physics Data Challenge (PDC) production
and are stored on the local PROOF pool via a Bash script. The files are located on
AliEn under the following path:

alien:///alice/sim/PDC_08a/LHC08x/180110
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which holds event data of simulated pp collisions with forced hadron decays
and charm signal. The directory structure (.../#run/#job/AliESDs.root)
is preserved when staging data on the PROOF pool. Data could also have been
accessed directly from the local ALICE storage in Torino, but the network config-
uration currently in place does not yet allow a fast analysis with this data access
model (see § 3.2.3). Each ESD contains 100 events: there are 967 files, for a total
of 96700 events.

The analysis task has a single input container: a TChain created from ESD
files listed line by line in a text file with an external macro (see § E.5.1). Event by
event, transverse momentum (pt) and energy (E) are collected from the recon-
structed tracks and are stored in two output containers (two TH1F histograms)
saved in a single ROOT file. At the end of the analysis task, the plots are printed
on screen on the client machine, as in Figure 4.2(a) and (b). Header file and
implementation of this task (called AliAnalysisTaskDistros) are reported in
§ E.5.2.1 and § E.5.2.2.

The analysis is run by a single caller script (§ E.5.3) that can be told to run
the analysis either locally (on one core) or on PROOF (on 32 workers): timing
measures are made three times then averaged for each case. Timings are reported
in Table 4.1 and plotted in Figure 4.3.

Run time [s] Error [s] Error [%] Rate [evt/s]

PROOF 26.8 0.4 1.6 3608.2

Local 964.7 28.3 2.9 100.2

Table 4.1: Local versus PROOF measurements for the spectra analysis task: errors are

calculated from measurements repeated three times.

Timing measurements were made on the sole analysis, ignoring the time re-
quired for TChain creation. Two different (but comparable) methods were used
to measure the running time on local and on PROOF.

• On PROOF, timing is subdivided in a “startup time” that PROOF uses to
know where data is located, and a “running time”, that is the effective
processing time: PROOF prints out the timing on a graphical console (Fig-
ure 4.4.) In this case, total time is calculated as the sum of the two times.

• Locally, total timing is directly calculated by using a TStopwatch object1.

1http://root.cern.ch/root/html/TStopwatch

http://root.cern.ch/root/html/TStopwatch
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Figure 4.2: Two sample spectra obtained from a simple ALICE analysis task run on 96700

events.



112 PROOF USE CASES

Run 1Run 1Run 1 Run 2Run 2Run 2 Run 3Run 3Run 3

Startup [s] Run [s] Total [s] Startup [s] Run [s] Total [s] Startup [s] Run [s] Total [s]
PROOF
Local

6,3 20,0 26,3 7,1 20,0 27,1 7,0 20,0 27,0
- - 939,0 - - 960,0 - - 995,0

Run time [s] Error [s] Error [%] Rate [evt/s]

PROOF

Local

26,8 0,4 1,6 3608,2

964,7 28,3 2,9 100,2
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Figure 4.3: Local versus PROOF event rate (higher is better) on a simple ALICE analysis

task that fills two spectra from 96700 events distributed in 967 ESD files: PROOF is

shown to be 36 times faster, by using 32 workers.

Figure 4.4: The graphical PROOF console while running an analysis task on the VAF.
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Results of the timings are clear: as expected, PROOF analysis is much (36×)
faster than local analysis. The only effort for the physicist was to substitute this
line of code:

mgr->StartAnalysis("local", chainESD);

with this one:

mgr->StartAnalysis("proof", chainESD);

plus the commands to enable PROOF and the required libraries on each node.

4.3.2 Multiple ESDs filtering to a single AOD

Analysis Object Datasets (AODs) are compact representations of ESDs: while
ESDs hold every event information obtained after the reconstruction, AODs hold
only the information needed for a specific type of analysis, thus using less mem-
ory.

The process of creating AODs from ESDs is called “event filtering”. This kind
of task is usually not run on PROOF but rather on the Grid, because it’s rather
slow if run sequentially on a desktop computer: however, since the classes respon-
sible of filtering ESDs (called AliAnalysisTaskESDfilter and other similar
names) inherit from AliAnalysisTask, it is in principle possible to PROOFize
them, enabling physicists to produce their AODs immediately, without waiting for
them to be run on the Grid.

A common “analysis train” (a set of different analyses run sequentially on the
same dataset) was slightly modified in order to be run on PROOF. The filters
applied to the ESDs are:

• the standard ESD filter;

• the muon filter;

• the PWG3 vertexing.

The analysis train has been run on the same 967 ESDs (holding 96700 events
globally) as the previous analysis task, producing a single (and rather big, ∼
90 MiB) AOD. Even if producing a single and big AOD it’s rather inefficient
because it makes subsequent AOD analysis non-embarrassingly parallelizable, it
is trivial to modify the train code in order to run several times the filters on
different ESDs by producing several AODs.

In analogy with the spectra analysis task, in this analysis train we measure
the time taken for the task to complete with a TStopwatch in the local case and
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Run time [s] Error [s] Error [%] Rate [evt/s]

PROOF 61.2 4.4 7.2 1579.2

Local 1308.3 39.6 3.0 73.9

Table 4.2: Local versus PROOF measurements for the analysis train that produces one

AOD from several ESDs: errors are calculated from measurements repeated three times.

by reading startup and analysis time from the graphical console (see again Fig-
ure 4.4) in the PROOF case. Analyses are repeated three times, then the timings
are averaged and event rate is calculated. Results are positive even in this case, as
expected: as we can see in Table 4.2, PROOF with 32 workers perform 21.4 times
faster than sequential analysis. Event rate is reported in Figure 4.5.

Run 1Run 1Run 1 Run 2Run 2Run 2 Run 3Run 3Run 3

Startup [s] Run [s] Total [s] Startup [s] Run [s] Total [s] Startup [s] Run [s] Total [s]
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Local

5,5 59,0 64,5 6,0 57,0 63,0 6,2 50,0 56,2
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Figure 4.5: Local versus PROOF event rate (higher is better) on an analysis train that

filters 96700 events distributed in 967 ESD files in order to generate a single big AOD:

PROOF is shown to be 21.4 times faster, by using 32 workers.

4.4 Reconstruction of an open charm decay

In this section we will show how much a real CPU-intensive Physics analysis gains
speed if executed on PROOF instead of locally. The analysis is a reconstruction
of secondary interaction vertexes that selects candidate tracks for a specific open
charm decay: D+→ K−π+π+.
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4.4.1 Open charm physics

Heavy quarks, like charm and bottom, are produced in the early stages of high
energy nucleus-nucleus collisions and their lifetime is longer than the expected
lifetime of the QGP. This makes open charmed mesons a powerful tool to investi-
gate nuclear effects on charm production, propagation and hadronization in the
medium produced in heavy-ion collisions at high energy.

In addition, measurements of mesons with open charm and beauty provide
a natural normalization for charmonia and bottomonia production at the LHC.
At the SPS the Drell-Yan process (qq̄ → µ+µ−) was used as reference signal for
charmonia normalization because it scales with the number of binary collisions
and it is independent on nuclear effects; at LHC energies the Drell-Yan signal is
expected to be completely shadowed into dileptons from semi-leptonic decays of
open charm and open beauty even when energy loss of heavy quarks is assumed.

Measurement of charm and beauty production in proton-proton and proton-
nucleus collisions is of great interest too, not only because it provides a baseline
to compare the results obtained with nucleus-nucleus collisions, but also because
it provides important tests for QCD in a new energy domain.

4.4.1.1 Heavy quark production in pp collisions

The main contribution to heavy-quark production in pp collisions is thought to
come from partonic hard scatterings. Since the heavy-quarks have a large mass
(mQ > ΛQC D), their production can be described by Perturbative QCD (pQCD).

The single-inclusive differential cross section for the production of a heavy-
flavoured hadron can be expressed as follows[9]:

dσ

dpT

�

�

�

�

AA→HQX
=

∑

i, j=q,q̄,g

fi ⊗ f j ⊗
dσ̂

d p̂T

�

�

�

�

i j→QQ̄
⊗ D

HQ
Q

where the meaning of the terms follows.

• fi = fi(x i ,µ
2
F ) is the Parton Distribution Function (PDF): it gives the proba-

bility of finding a quark or a gluon of type i carrying a momentum fraction
x i of the nucleon; µF is the factorization scale. The evolution of PDFs in
QCD is governed by the parameter αs/π: once the initial conditions of the
nucleon structure are experimentally determined through the measurement
of deep inelastic cross-section at a given Q2, the PDFs can be predicted by
pQCD at higher Q2.

• dσ̂/d p̂T
i j→QQ̄ is the partonic cross section: this term can be described by

pQCD, since it is related to interactions of partons at high Q2.
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• D
HQ
Q is the fragmentation function which represents the probability for the

scattered heavy quark Q to materialize as a hadron HQ with momentum
fraction z = pHQ

/pQ. The fragmentation functions can be experimentally
determined by measuring jets in e+e− collisions.

A precise measurement of the heavy-quark cross section cannot be done di-
rectly from the measurement of the total cross section for heavy-flavoured ha-
drons, because there are several experimental constraints, like the restricted de-
tector acceptance, which do not allow the measurement of total cross sections.
Nevertheless, since both the parton distribution functions and the fragmentation
functions are well measured, they can be used to determine the heavy-quark cross
section starting from the measured heavy-flavoured hadrons.

4.4.1.2 Heavy quark production in AA collisions

Heavy-quarks are produced on a time scale of ∼ ħh/(2mQc2) ' 0.08 fm/c (for cc̄
production) from hard partonic scatterings during the early stages of the nucleus-
nucleus collision and also possibly in the QGP, if the initial temperature is high
enough. No production should occur at later times in the QGP, whose expected
τ is 10 fm/c, and none in the hadronic matter. Thus, the total number of charm
quarks should get frozen very early in the evolution of the collision, making them
good candidates for a probe of the QGP.

The total inclusive cross section corresponding to a given centrality interval
(0 < b < bc) for a hard process involving two nuclei A and B is expressed as a
function of the impact parameter bc:

σhard
AB (bc) =

∫ bc

0

d b 2πb
�

1− (1−σhard
NN TAB(b))

AB
�

'
∫ bc

0

d b 2πb · ABσhard
NN TAB(b)

where:

• σhard
NN is the cross section for a given hard process, considered small in the

approximation of the last passage;

• TAB(b) is the thickness function, related to the overlapping volume of the
two nuclei at a given collision impact parameter b.

Several effects can possibly break the binary scaling; these effects can be di-
vided into two classes: initial-state effects, such as nuclear shadowing, which
affect the heavy-quark production by modifying the parton distribution functions
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in the nucleus (there are predictions that these effects may even occur in pp
collisions at the LHC energies), and final-state effects, due to the interactions of
the initially produced partons in the nuclear medium, which affect the heavy-
flavoured meson production by modifying the fragmentation function (energy
loss of the partons and development of anisotropic flow patterns are among such
processes).

4.4.2 Reconstruction of D+→ K−π+π+

A full reconstruction of the D+→ K−π+π+ open charm decay is performed, using
particle identification, tracking and vertexing: the analysis focuses particularly on
secondary vertices finding.

4.4.2.1 Candidates selection strategy

The selection strategy for the D+ → K−π+π+ (Figure 4.6) decay candidates is
based on the invariant mass analysis of fully reconstructed topologies originating
from displaced vertices[23].

Figure 4.6: The D+ → K−π+π+ decay, showing primary and secondary interaction ver-

tices and tracks of the decay products.

The three ALICE detectors involved in an open charm decay reconstruction
are the ITS that performs both tracking and vertexing, the TPC dedicated to par-
ticle tracking and the TOF that identifies k and π: the decay is reconstructed from
the outside in, as for the sample event displayed in Figure 4.7.

The data collected by these three detectors are used at first to build triplets
of tracks with correct combination of charge signs and large impact parameter;
then, each track is tagged with particle identification.
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(a) TPC level.

(b) ITS level.

Figure 4.7: Event display of a D+ → K−π+π+ decay, from the point of view of the

tracking and vertexing detectors involved, from the outside in.
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From the tagged and tracked triplets, the secondary vertex is calculated using
the Distance of Closest Approach (DCA) method; in the end, the good pointing of
the reconstructed D momentum to the primary vertex is verified.

The whole reconstruction method is not a complex algorithm, but all the dif-
ferent triplets must be considered per each event, involving a very large number
of iterations: this is the reason why the execution time of a reconstruction of
several (≈ 105) events is expected to take hours to complete.

The algorithm must be optimized in order to choose the cuts that candidate
tracks must pass in order to be taken into account in the final invariant mass
distribution: if this analysis is run locally or on the Grid, as it is largely done at
this time in ALICE, optimization is a process that may take days or weeks, while
a PROOF analysis may potentially reduce of an order of magnitude or two the
required time, as we are about to see.

4.4.2.2 Analysis results

The analysis runs on ESD files: if reconstructed tracks pass an appropriate cut
they are written as candidates in a AOD file file specific for Heavy Flavour ver-
texing (namely AliAOD.VertexingHF.root). This file contains information in
a TTree that can be attached as a “friend tree” to a standard AOD. This analysis
can be found in the PWG3/vertexingHF subdirectory of the AliRoot framework:
the class that accomplishes the analysis is a standard analysis task, and it is called
AliAnalysisTaskSEVertexingHF.

Currently, the example macro that runs the analysis does not implement a
PROOF mode, since it is designed to run either locally or on the Grid – the latter
solution being non-interactive: the macro was modified in order to run the analy-
sis on PROOF and to build a TChain of several ESDs read from a file list in text
format with one ESD path per line. As stressed before, no change in the analysis
task was necessary, making it easy to run the analysis on PROOF even without
specific knowledge about ideal parallel computing.

Vertexing of heavy flavours is a real testbed for PROOF. From the comput-
ing resources point of view it is very CPU and memory intensive: on the VAF
configuration there are currently four machines with eight PROOF workers each,
meaning eight parallel ROOT sessions per machine that fill up the memory, a sit-
uation that may rapidly lead to system instability and crashes. The other issue is
that many data must be sent through the network in order to be finally assembled
by the PROOF master, and network issues may also negatively affect the stability
of PROOF by leading to locks and corrupted final data. In other words, this real
Physics application is useful to test PROOF stability, to check final data integrity
and to benchmark speed improvements with respect to the same analysis run
locally.
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ESDs used in this analysis are taken from a run of an official pp Grid produc-
tion with “forced” charm, a simulation directive that guarantees the presence of
roughly one D+ per generated pp collision; 97600 events distributed in 976 files
were analyzed. The analysis has been run twice on these files: locally and on
PROOF. Speed benchmarks and proper comparisons between local and PROOF
analyses are found in Table 4.3 and Figure 4.8: we can see that in this real use
case PROOF is ∼31 times faster. Scaling is almost linear, because we took care of
the high memory requirements of vertexing analysis: we allocated 7 GiB on three
hosts (24 workers) and 15 GiB on one host (8 workers); moreover, none of the
workers crashed during the test.

Run time [s] Error [s] Error [%] Rate [evt/s]

PROOF

Local

1221,0 79,2

37620,0 2,6

# events

# files

96700

967

How much is PROOF faster? 30,8
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R
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Figure 4.8: Local versus PROOF event rate (higher is better) on an analysis task for the

Heavy Flavour vertexing.

Run time [s] Rate [evt/s]

PROOF 1221.0 79.2

Local 37620.0 2.6

Table 4.3: Local versus PROOF measurements for the Heavy Flavour vertexing.

In order to check data integrity and results significance, a macro that plots
the invariant mass distribution for the candidates of the D+→ K−π+π+ decay is
run: data is taken from the TTree in the output AOD, and no background sub-
traction is done neither during the analysis nor during the histogram filling. The
histogram was plotted both on the locally and on the PROOF produced AOD.



4.4 – RECONSTRUCTION OF AN OPEN CHARM DECAY 121

The invariant mass distribution obtained is represented in Figure 4.9(a) and
(b), with two different set of cuts choosen in order to highlight the D+ peak at
1869.62 MeV/c2: the same results, as expected, have been obtained with PROOF
and local analysis.

We should note that the statistics of the number of events choosen is not
large enough to obtain evident D+ peaks; moreover, as we have already noted,
no background signal subtraction is performed at this time. Nevertheless, the D+

peak can be spotted, and should be compared with a more complex analysis (with
more statistics and background subtraction), which gives as output the very clean
distribution shown in Figure 4.10.

For its nature, this analysis should be considered an example of what can
be done on PROOF and the most important results must be underlined: there’s
a very big speed improvement in PROOF analysis, and the final results are the
same, showing the stability and scalability of this specific analysis task.

Therefore, PROOF is shown to be suitable and advisable for analysis optimiza-
tions because of its robustness and great speed enhancement.
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(a) First set of cuts: more statistics, peak less evident.
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(b) Second set of cuts: less statistics, peak more evident.

Figure 4.9: Invariant mass distribution generated from the candidates for a D+ →
K−π+π+ decay. D+ has a mass of 1869.62 MeV: the peak corresponding to this mass

is indicated with an arrow in both figures. The number of events processed in this analy-

sis is not enough to achieve both large statistics and an evident D+ peak.
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Figure 4.10: D+ → K−π+π+ invariant mass distribution with background subtraction

and a high statistics: this distribution is a reference for our analysis.





Chapter 5

Conclusions

Since real data taking from LHC is expected to start in a very short time, the de-
mand for an infrastructure dedicated to interactive and chaotic user analysis is
growing: our benchmarks on the prototype of the Virtual Analysis Facility demon-
strate that virtualization could constitute a valid method of sharing the same com-
puting resources between a largely accepted computing model (the Grid) and a
complementary one without any modification in the existing standards.

5.1 Achieved results

In summary, our feasibility tests (§ 2.2) show that paravirtualization (and, in
principle, any other form of hardware-accelerated virtualization) does not rele-
vantly affect the performance of typical HEP jobs, namely simulation, reconstruc-
tion and chaotic analysis, as far as job performances are not I/O bound; and, even
in that case, since most jobs do I/O to and from remote storage, disk performance
loss shouldn’t be an issue. Moreover, the feature of dynamically reassigning mem-
ory and CPU to virtual hosts introduced by Xen was heavily tested and proven to
be stable (§ 2.3). For their intrinsic generality, our tests have a scope that also
goes beyond HEP applications and show that code quality of virtualization solu-
tions has reached a mature and stable state.

The VAF is at this time a working prototype: four virtual Grid WNs are al-
ready in production since late December 2008 and they constantly work without
any failure above the average. VAF implementation was designed to be scal-
able (§ 3.1) through a mass operating system installation procedure and several
ad-hoc utilities: the installation of a new host only requires a few clicks on a
graphical web interface (Cobbler) and adding the new hostname to an environ-
ment variable on the head node. An incremental backup solution automatically



126 CONCLUSIONS

backs up head node’s disk in order to revert it to a previously working state in
case of failure. An extended documentation is maintained directly on the Web as
a wiki that may be useful in the near future as a reference and a support for both
system administrators and VAF users.

By implementing a prototype we were also able to test Xen and hardware
behaviour in a real production environment, with both Grid and PROOF running,
and potentially concurring for the same resources: these tests show that real
performance isolation is achieved even under heavy loads (§ 3.2) through Xen
global accounting policy, so that the WN and the PROOF slave do not interfere
with each other.

The VAF implements an authentication method, the GSI certificate authenti-
cation (§ 3.1.4.2) widely used in the ALICE experiment and well-known by end
users: they don’t need to learn any particular new authentication method, never-
theless strong security and access limitation has been achieved.

Differently from the PROOF On Demand (POD) solution (formerly known
as gLitePROOF), the VAF is feasible on every small-sized (namely, Tier-2) ALICE
computing centre; moreover we can easily achieve real performance isolation
between the Grid WN and the PROOF slave, and also perfect sandboxing, by
combining an hypervisor with physical disks separation.

Lastly, the facility was used in order to measure speed improvements gained
through PROOF analysis compared to local analysis: these improvements are
shown to be very high (§ 4). Particularly, the AliRoot macro used to determine
the secondary vertex for heavy flavours was successfully adapted in order to run
the vertexing algorithm on PROOF: as an example use case of the algorithm,
a secondary vertex was reconstructed for the open charm D+ → K−π+π+ decay
candidates, showing an invariant mass distribution with a peak in correspondence
to the D+ mass (§ 4.4).

5.2 Outlook and future improvements

A couple of issues need to be solved before opening it to real users, both related
to the data access model we intend to use – reading data directly from a SE
already in place for ALICE in Torino. The first issue is the network configuration:
the NAT between the SE and the VAF needs to be bypassed, and probably the
best solution would be a dedicated network bone for our purposes. The PROOF
model was primarily built to access data staged on the local pool and any other
approach is necessarily slower: if we want to access directly the SE we should
remove any bottleneck that may negatively affect network performance. The
second issue is related to how the Grid proxy is used to access data on the Grid:
when using PROOF there are several workers that independently access the AliEn
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storage, each of them needing its own proxy. PROOF does not propagate the
proxy certificate on the workers, at the moment, so we should find a solution to
allow workers authentication to the AliEn File Catalogue: a workaround would
be to manually propagate the certificate directly from the user macro used to
launch a custom analysis task, while a complete solution involves changes in the
ROOT upstream code.

Although the utilities used to manage the VAF are stable and widely used it
would be better to rewrite them in order to support several virtualization methods:
a valid abstraction layer that interacts with several hypervisors is libvirt1, which
also has Python bindings, a feature that might be useful if we want to rewrite our
utilities in a more suitable language than shell scripting. Also, the Web interface
needs further developement.

At this time resources are statically assigned to the PROOF nodes via a manual
command: a better approach would be to “turn on” dynamically the facility when
users need it, without neither system administrator nor user intervention. This
kind of approach probably requires the PROOF Scalla plugin to be modified in
order to trigger an event when a user connects to PROOF.

Lastly, highest priority must be currently given to the data access model be-
cause once completed we are allowed to open the VAF to potential users which
will give a realistic feedback on their analysis experience.

1http://libvirt.org/





Appendix A

SysBench command-line

parameters

Command-line parameters to run and repeat the SysBench tests run in § 2.2.2
follow.

A.1 CPU benchmark

The test is run with <threads> varying from 1 to 64, with a step of 1. The
maximum prime number tested is 20000.

sysbench --test=cpu --cpu-max-prime=20000 --num-threads=<threads> run

A.2 Threads benchmark

Understanding the threads SysBench benchmark requires a little bit of knowledge
on how threads scheduling work. A shared resource that can be accessed by one
thread at a time is called a mutex (from mutual exclusion). A SysBench iteration
in this kind of benchmark consists of a cycle of lock/yield/unlock.

A lock occurs when a thread takes ownership of a resource: the resource is
then locked, meaning that no other thread can access it. On the countrary, unlock
is when a mutex is freed. A yield occurs when a thread explicitly yields control
to the part of the implementation responsible for scheduling threads: this is done
to avoid deadlocks1 (that occur when two or more threads are waiting for each

1See http://en.wikipedia.org/wiki/Deadlock with exhaustive examples.

http://en.wikipedia.org/wiki/Deadlock
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other to unlock a resource) and may have the effect of allowing other threads to
run: in other words, each thread must explicitly have a “breakpoint” that gives
control to the thread scheduler, because the latter is unable to interrupt a thread
on its own initiative. In any case, SysBench threads benchmark avoids deadlocks.

This test is run with 1000 iterations and 8 mutexes, the default values, with
a variable number of threads.

sysbench --test=threads num-threads=<threads> run

A.3 Mutex benchmark

This test is run with the default parameters, that are listed below.

• number of mutexes: 4096

• number of mutex locks per each request: 50000

• number of null iterations before acquiring the lock: 10000

sysbench --test=mutex --num-threads=<threads> run

A.4 Memory benchmark

SysBench provides both read and write benchmarks: we are interested in write
benchmark, since it is supposed to be the slowest. An amount of 5 GiB of random
data is written with <threads> varying from 1 to 64 with a step of 1.

sysbench --test=memory –num-threads=<threads> \
--memory-total-size=5G --memory-oper=write run

A.5 Database benchmark

This test performs several queries on a MySQL database locally installed. The
database is accessed with the proper username and password. The test must be
run three times: the first time (prepare mode) creates the proper records on the
database; the second time (run mode) performs several queries to get the records
from the database; the last step (cleanup mode) deletes the records. Table must
be created and dropped manually.

Time is measured from run mode only, that by default performs SELECT
queries. SysBench is told to perform 105 queries on 106 records, with a vari-
able number of concurrent threads.



A.6 – FILE I/O BENCHMARK 131

sysbench --test=oltp --mysql-user=<user> --mysql-password=<pass> \
--max-requests=100000 --oltp-table-size=1000000 \
--num-threads=<threads> [prepare|run|cleanup]

A.6 File I/O benchmark

File I/O benchmark is run both in sequential read (seqrd) and in sequential write
(seqwr) mode on a default value of 128 files for a total size of 5 GiB. This test,
just like the database benchmark, has a “prepare” mode that creates the files, a
“run” mode when files are read or written and a “cleanup” mode where files are
finally deleted. Time is measured on the run mode only.

Unlike the other tests this is executed with a fixed number of threads choosen
to be 10 in order to simulate one process per core (our machines have eight cores)
plus a few eventually overcommitted jobs or ancillary services (such as swap).

sysbench --test=fileio --file-total-size=5G \
--file-test-mode=[seqrd|seqwr] \
--num-threads=10 [prepare|run|cleanup]

Note that all NFS exports are done with this simple /etc/exports file, that
contains no particular configuration:

/var/vafexport 192.168.1.0/24(rw,sync,root_squash)





Appendix B

Linux monitoring and memory

internals

B.1 The proc virtual filesystem

The Linux proc filesystem is a virtual filesystem where files and directories con-
tain information about running processes and system resources. Altough the proc
filesystem year after year has become a container for several information that are
not inherent to running processes, despite of its name (e.g. the /proc/bus/usb
subtree used to contain information about the connected USB devices), its main
structure is to contain some files with global system information within the root
tree, and several directories named after the pids of running processes, each of
them containing specific process information.

The virtual proc filesystem is an useful and easy to use interface to obtain
information within a shell or a shell script, because the information is usually
returned as text, not binaries.

Many Linux process information utilities use the proc filesystem to print out
information: this is the case, for example, of top, ps and uptime. Knowing the
proc filesystem is useful for performance monitoring mainly because directly ac-
cessing the information from the virtual files is a less time-consuming task than
retrieving information about every process and then parsing out only the pro-
cesses we need to monitor.

A complete description of what the proc filesystem does is available, as usual,
on the Linux manpages1. However, since we are going to use this method for per-

1man 5 proc
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Field no. Name Description

1 uptime time since boot [s]

2 idle time time spent in idle cycles since boot [s]

Table B.1: /proc/uptime fields and their description.

formance monitoring, a brief description of the most relevant virtual files follows.

B.1.1 /proc/cpuinfo

This file contains information about all available system CPUs. The output is in a
human-readable form, with output description. To simply obtain the number of
available cores on the system, we can cast:

grep -c processor /proc/cpuinfo

B.1.2 /proc/meminfo

As the name suggests, this file contains information about every system memory,
from RAM usage to caches. Output is similar to cpuinfo: it is human-readable,
with fields description. The most relevant fields are:

• MemTotal: total RAM installed on the system [kiB]

• MemFree: free RAM [kiB]

• SwapTotal: total swap space [kiB]

• SwapFree: available swap space [kiB]

• Cached: the buffer cache [kiB]

• SwapCache: the swap cache (see below) [kiB]

A more detailed explanation on how Linux caches work can be found later on
(see § B.3).

B.1.3 /proc/uptime

This file contains only two numerical fields, separated by a space. The list of fields
is reported in Table B.1.
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Field no. Name Description

1 pid process id

3 state one of RSDZTW2

14 utime user-mode time [jiffies]

15 stime kernel-mode [jiffies]

22 starttime when the proc. was started since boot

Table B.2: Most relevant fields from /proc/[pid]/stat.

B.1.4 /proc/[pid]/stat

This virtual file contains status information about the process to which the pid
refers. There are many space-separated fields, that can be easily parsed (e.g. by
using awk). The most relevant fields from the stat file are reported in Table B.2.

B.2 Jiffies

In Computer Science’s jargon, a jiffy is a time measurement unit. Its value isn’t
absolute, and depends on the system. System interrupts are handled every jiffy,
so 1 jiffy = system interrupt timer tick. Equivalently, process scheduling occurs
every jiffy 3.

On every computer used in these tests, 1 jiffy = 0.01 s. This is hardcoded at
kernel level and can be changed by recompilation.

In recent Xen versions system clock synchronization between the physical host
and domUs is very precise, meaning we don’t need to manually synchronize sys-
tem clocks in VMs with a NTP server.

However, there is only one global credit scheduler running on dom0, whose
task is to schedule every process on every domU (and dom0 itself of course),
according to a “maximum VCPU usage” given in percentage (where, e.g., 200
means two VCPUs), called the cap, and a “relative priority” called weight (where
a VM with a weight=24 gets twice priority over a VM with a weight=12).

VCPUs in VMs count ticks, but with a global scheduling policy there is no
exact correspondence between a physical CPU and a VCPU. As a first result, ticks
in VMs last about 0.01 s, with some small glitches that become evident when

2R: running; S: sleeping in an interruptible wait; D: waiting in uninterruptible disk sleep; Z:

zombie; T: traced or stopped (on a signal); W: paging.
3http://en.wikipedia.org/wiki/Jiffy_(time)#Use_in_computing

http://en.wikipedia.org/wiki/Jiffy_(time)#Use_in_computing


136 LINUX MONITORING AND MEMORY INTERNALS

monitoring the CPU usage from within the VM. This is because the Xen scheduler
moves the system ticker from one physical CPU to another, transparently for the
VM.

For the same reason, there is a second issue: with a cap (VM priority) not
multiple of 100 (meaning we are not assigning a whole number of CPUs to the
VM) system interrupt ticks are irregularly spaced, different from 1/100 s: in that
situation we wouldn’t be able to measure precisely, e.g., the CPU percentage used
by a process, because user time and system time are returned in jiffies instead of
seconds.

B.3 Buffer cache and swap cache

The buffer cache4 is used to speed up disk I/O; it can be write-through or write-
back. The swap cache5 is part of the swap space used by data that used to be on
the swap but it’s now on the RAM: when data needs to be swapped, it does not
need to be written again.

4About the buffer cache and how to invalidate it see:

http://www.faqs.org/docs/linux_admin/buffer-cache.html
http://aplawrence.com/Linux/buffer_cache.html
http://www.linux-tutorial.info/modules.php?name=MContent&pageid=310

5http://kerneltrap.org/node/4097

http://www.faqs.org/docs/linux_admin/buffer-cache.html
http://aplawrence.com/Linux/buffer_cache.html
http://www.linux-tutorial.info/modules.php?name=MContent&pageid=310
http://kerneltrap.org/node/4097


Appendix C

Resources monitoring and event

timing utilities and file formats

C.1 Event timing on domU

As soon as an event is generated event timing for each instance is appended at
the end of a file named evtime_<num>.out. An example output follows:

345703.40 70.30 26.85 1:48.68
345809.07 71.52 26.36 1:45.47
345913.79 71.18 26.42 1:44.60
346017.91 71.54 26.47 1:44.06
346116.82 71.18 25.71 1:38.88

where the columns meaning is:

1. uptime when sim. exited [s]

2. cumulative user time [s]

3. cumulative system time [s]

4. elapsed real time [min:s]

Cumulative user time, system time and real time can be obtained using the time
utility with a format specifier (-a means “append”):

/usr/bin/time -f "%U %S %E" -a -o "<output_file>"
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Note that if we launch time without any path we could not control the output
format, because some shells (e.g. bash, tcsh) have a time built-in command that
has precedence over the external program. The time utility can be called by
simply specifying the full path (and this is what we do).

C.2 Resources monitoring on domU

The monitor script (§ E.2.3) writes its output on a file, called monitor.raw, sub-
sequently cleaned up by SimuPerfMon (§§ C.3, E.2.2), that produces a monitor.
out. Each line of these files is rather long: there are several fields separated by
spaces. The fields are explained in Table C.1(a) and (b).

No. Descr. u.m.

1 uptime [s]

2 total RAM [kiB]

3 free RAM [kiB]

4 buffer cache [kiB]

5 swap cache [kiB]

6 total swap [kiB]

7 free swap [kiB]

(a) System-related fields.

No. Descr. u.m.

8+ 3× n start time [jiffies]

9+ 3× n user time [jiffies]

10+ 3× n system time [jiffies]

(b) Repeated for each n-th instance.

Table C.1: Fields in monitor.{out,raw} temporary files when monitoring perfor-

mance on domU.

C.3 Details on SimuPerfMon

SimuPerfMon is a shell script that allows to control running simulations, monitor
the execution time and collect benchmark results into a single archive. It uses
the dialog utility, a program that uses the well-known ncurses library to bring
text-mode menus and dialog windows to shell scripts.

Two screenshots of the interface are presented in Figure C.1(a) and C.1(b). A
description of available menu items follows.

• The Run menu item, available only if no running simulation has been de-
tected, starts in background a screen for each simulation (each screen is
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named AliRoot_<n>, where <n> is the zero-based instance number) and
a screen with the resources monitor script. The script that takes care of
running each instance is AliRoot/RunSingle.sh. This script runs each
simulation in a directory named after the instance number (BenchRunOut/
Instance_<n>), so no instance interferes with the others.

• The Stop and collect data item kills the screens running the AliRoot in-
stances, then cleans up the data in Data/monitor.raw and outputs Data/
monitor.out, as described above. The whole directory is compressed in
an archive that contains in its name the host name and the current date
and time, such as Data-alivaf-001-20080522-140357.tar.bz2.

• There is also an item called Reset swap space, which simply does first a
swapoff then a swapon. Because of the swap cache, some unused memory
pages may persist on swap even if there is enough space on the RAM. Reset-
ting swap space forces these pages to be removed from swap and eventually
moved on the RAM. Note that swapoff correctly fails if the total memory
used by the system is greater than the system RAM, that is when there isn’t
enough room for every memory page solely on RAM.

• When the jobs are running, SimuPerfMon prints out the running time (in
days, hours, minutes and seconds) and the number of running instances.
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(a) AliRoot is not running.

(b) AliRoot is running in background: execution time is printed.

Figure C.1: Two screenshots of SimuPerfMon, the control interface for resource moni-

toring benchmark.



Appendix D

VAF command-line utilities

details

Some utilities have been written to manage the VAF from the head node. Each
utility is a shell script and its name begins with Vaf, so the administrator can sim-
ply type Vaf then [TAB] two times to list all available VAF management utilities.
A description of these utilities follows.

• VafBroadcast (§ E.4.2) broadcasts a command via ssh to the specified
machines (PROOF workers, dom0s, PROOF master).

• VafCopyPublicKey (§ E.4.3) copies the VAF root ssh public key to the
target machine’s authorized keys list, to enable passwordless (thus, non-
interactive) ssh access. This procedure is not done by the kickstart (i.e.
at installation level) for security reasons, so that the administrator exactly
knows which machines can be accessed by key.

• VafMoveResources (§ E.4.4) tells each dom0 to change the resources
assigned to a particular VM (matched with wildcards expansion), in par-
ticular memory, cap and weight. If changing resources of more than one
machine simultaneously and, for instance, you want to give more memory
to a machine and reduce memory from another one, the script takes care
of taking out memory first in order to have enough free memory to give to
the other machine. This script is also responsible of automatically generat-
ing the static PROOF resource locator (proof.conf, see § E.3.2). Memory
setting can be also specified either in MiB or as a percentage of the total
memory.
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• VafProfiles (§ E.4.5) calls VafMoveResources with several predefined
usage profiles (such as a profile with all resources to Grid, a profile with all
resources to PROOF and a profile with half resources each).

• VafProof is the name of two different scripts to start, stop and monitor
status and log of xrootd and cmsd daemon. The first one is called on each
machine and actually does the job (§ E.4.6.2); the second one resides only
on the head node and calls the first script on each machine sequentially,
outputting the results (§ E.4.6.1). Output is color-coded to ease error find-
ing.



Appendix E

Code listings

E.1 Geant4 simulation control scripts

E.1.1 run_mult.sh

This Bash script opens a screen in background which launches a wrapper script for
the Geant4 simulation.

#!/bin/bash

for (( i=0; i<8; i++ )); do
screen -dmS water270_$i ./run_single.sh $i

done

E.1.2 run_single.sh

This Bash script prepares the shell environment needed by Geant4 and ROOT and
passes a seed to the simulation.

#!/bin/bash

source env.sh

seeds=(4563421 47654168 4646876 723845 78245872348 478456382 23256583483 \
9823897522)

seq=$1

# Automatically reads number of events from ion.mac
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evt=‘grep /run/beamOn ion.mac | cut -b13-‘

input="$evt\n100\n${seeds[$seq]}\n_$seq\nexit"

date +%d/%m/%Y\ %H.%M.%S > "time_$seq"
echo -e $input | water270
date +%d/%m/%Y\ %H.%M.%S >> "time_$seq"

E.2 Moving and monitoring resources

E.2.1 MoveResources

This is the script that runs on the dom0 and changes resources configuration every
two hours (7200 s).

#!/bin/bash

# On a single machine, every two hours

MEM=( 3584 256 3584 256 1792 512 1792 512 )
PSR=( 400 100 400 100 300 200 300 200 )

VM="alivaf-001"

CYCLE_SECS=7200

function VDate() {
date ’+%d/%m/%Y %H.%M.%S’

}

while [ 1==1 ]
do

for ((I=0; $I<${#MEM[*]}; I++))
do

echo -n "$(VDate) [$(($I+1))/${#MEM[*]}] cap=${PSR[$I]} mem=${MEM[$I]} --> "
xm sched-credit -d $VM -c ${PSR[$I]}
xm mem-set vaf01 ${MEM[$I]}
echo "done"
sleep $CYCLE_SECS

done

done
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E.2.2 SimuPerfMon

This is the control interface that runs on domU launches resource monitoring in
background.

#!/bin/bash

# SimuPerfMon -- by Dario Berzano <dario.berzano@gmail.com>
INSTANCES=1

fi
}

# Set number of events
function SetEvents()
{

DIALOG_OUT=$(mktemp "$DIALOG_TEMPLATE")

dialog --no-cancel --inputbox \
"Number of events:" 0 0 $NUM_EVENTS \
2> "$DIALOG_OUT"

ANS=$(cat "$DIALOG_OUT")
rm "$DIALOG_OUT"

NUM_EVENTS=$(($ANS+0))

if [ $NUM_EVENTS == 0 ]; then
NUM_EVENTS=1

fi
}

# Run simulations
function Run()
{

clear

# Launches $INSTANCES instances of the simulation loop
echo "Launching $INSTANCES instances of aliroot with $NUM_EVENTS event(s)..."
for (( COUNT=0; COUNT<$INSTANCES; COUNT++ )); do

screen -dmS AliRoot_$COUNT "$SCRIPTS_DIR/RunSingle.sh" $COUNT \
$NUM_EVENTS "$SCRIPTS_DIR" "$BENCH_DIR" "$DATA_DIR"

done

# Launches the resources monitor script (see it for details)
echo "Launching performance monitor..."
screen -dmS monitor "$SCRIPTS_DIR/Monitor.sh" "$DATA_DIR" "$BENCH_DIR" \
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"$INSTANCES"

# Ok
Pause

}

# Resets swap space
function ResetSwap()
{

# Swap partition
SWAP=‘grep swap /etc/fstab | cut -d’ ’ -f1‘

clear

# Reset swap space - asks for root password
if [ "$SWAP" != "" ]; then

echo "Resetting swap space..."
su - -c "swapoff $SWAP ; swapon $SWAP"

else
echo "No swap partition found."

fi

Pause
}

# Clean up data directory
function ClearData()
{

echo ""
echo -n "Clearing data directory..."
OWD=$(pwd)
cd "$DATA_DIR"
rm * 2> /dev/null
cd "$OWD"
echo "done"

}

# Stops simulations, collects data, clears data directory
function StopCollect()
{

clear

KillAll
ArchiveData
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RET=$?

if [ $RET == 0 ]; then
ClearData

fi

Pause

if [ $RET == 0 ]; then
dialog --msgbox "A file named $ARCHIVE has been created." 0 0

else
dialog --msgbox "An error occured while creating $ARCHIVE." 0 0

fi
}

# Kill all simulations, monitor and related screens
function KillAll()
{

# Don’t kill aliroot, because RunSingle.sh eventually respawns it!
# Note that in emergency cases -KILL instead of -HUP could be used.
killall -HUP RunSingle.sh > /dev/null 2>&1
MONITOR_PID=‘screen -ls | grep monitor | cut -d. -f1‘

if [ "$MONITOR_PID" != "" ]; then
kill -9 $MONITOR_PID

fi

echo "Killing simulation(s)..."
echo ""
sleep 3
screen -wipe > /dev/null 2>&1
screen -ls

}

# Archives data to a file in cur. directory (for easy transfer)
function ArchiveData()
{

ARCHIVE="$SIMU_BASE_DIR/Data-$HOSTNAME-$(date +%Y%m%d-%H%M%S).tar.bz2"
OWD=$(pwd)

echo -n "Cleaning up the raw file..."

# Clean-up the raw file
NFIELDS=$((7+3*$RUNNING_INSTANCES))
DISCARDED=0
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while read LINE
do

FCNT=0
for F in $LINE
do

FCNT=$((FCNT+1))
done

if [ $FCNT == $NFIELDS ]; then
echo $LINE >> "$DATA_DIR/monitor.out"

else
DISCARDED=$((DISCARDED+1))

fi

done < "$DATA_DIR/monitor.raw"

echo "done"

echo ""
echo "Archiving data..."
echo ""

cd "$DATA_DIR"
tar cjvf "$ARCHIVE" *.out
RET=$?
cd "$OWD"

return $RET
}

# Pause
function Pause()
{

echo ""
echo -n "Press [Return] to continue..."
read

}

# Converts a time from seconds into a nice format (return stored in $TIME_STR)
function NiceTime()
{

TIME_S=$1
TIME_STR=""
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if [ $TIME_S -gt 86399 ]; then
DYS=$((TIME_S / 86400))
TIME_S=$(($TIME_S - $DYS * 86400))
TIME_STR="${DYS}d "

fi

if [ $TIME_S -gt 3599 ]; then
HRS=$(($TIME_S / 3600))
TIME_S=$(($TIME_S - $HRS * 3600))
TIME_STR="${TIME_STR}${HRS}h "

fi

if [ $TIME_S -gt 59 ]; then
MIN=$(($TIME_S / 60))
TIME_S=$(($TIME_S - $MIN * 60))
TIME_STR="${TIME_STR}${MIN}m "

fi

if [ $TIME_S -gt 0 ]; then
TIME_STR="${TIME_STR}${TIME_S}s "

fi

LEN=$((${#TIME_STR} - 1))

TIME_STR="${TIME_STR:0:$LEN}"
}

# Gets the running time
function GetRunningTime()
{

UPTIME_START=$(head -n1 "$DATA_DIR/monitor.raw" | cut -d’ ’ -f1)
UPTIME_NOW=$(cut -d’ ’ -f1 /proc/uptime)
RUNNING_TIME=$(echo "scale=0;a=$UPTIME_NOW/1;b=$UPTIME_START/1;a-b" | bc)
NiceTime $RUNNING_TIME
RUNNING_TIME="$TIME_STR"

}

# The main loop
function MainLoop()
{

while [ "$ANS" != "Quit" ]
do
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DIALOG_OUT=$(mktemp "$DIALOG_TEMPLATE")

RUNNING_INSTANCES=$(screen -ls | grep -c "AliRoot_")

if [ $RUNNING_INSTANCES == 0 ]; then
RUN_OR_STOP="Run"
SET_RUN_INST="Set instances"
MENU_INST=$INSTANCES
RUN_NO_RUN="No simulation is running"
RUNNING_TIME=""

else
RUN_OR_STOP="Stop and collect data"
SET_RUN_INST="Running instances"
MENU_INST=$RUNNING_INSTANCES
RUN_NO_RUN="Running time"
GetRunningTime

fi

dialog --no-cancel --menu \
"Welcome to SimuPerfMon." 0 0 0 \
"$RUN_NO_RUN" "$RUNNING_TIME" \
"" "" \
"$RUN_OR_STOP" "" \
"$SET_RUN_INST" "$MENU_INST" \
"Set events" "$NUM_EVENTS" \
"" "" \
"Reset swap space" "" \
"Show screens" "" \
"Top" "" \
"" "" \
"Quit" "" 2> "$DIALOG_OUT"

ANS=$(cat "$DIALOG_OUT")
rm "$DIALOG_OUT"

case $ANS in

"Run")
Run

;;

"Set instances")
SetInstances

;;
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"Set events")
SetEvents

;;

"Stop and collect data")
StopCollect

;;

"Reset swap space")
ResetSwap

;;

"Show screens")
clear
screen -ls
Pause

;;

"Top")
top

;;

esac

done

clear
}

# Do
Init
MainLoop

E.2.3 Monitor.sh

This is the monitoring script launched in background by SimuPerfMon.

#!/bin/bash

if [ $# -lt 3 ]; then
echo "Usage: $0 <data_dir> <bench_dir> <instances>"
exit 1

fi

OUT="$1/monitor.raw"
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INST_PREFIX="$2/Instance_"
EVERY_SECS=5
INSTANCES="$3"

if [ -e "$OUT" ]; then
mv "$OUT" "$OUT.bak"

fi

while [ 1 ]
do

UPTIME="$(cut -d’ ’ -f1 /proc/uptime)"

# Global system resources
echo -n "$UPTIME " >> "$OUT"
echo -n $(egrep ’MemTotal|MemFree|Cached|SwapTotal|SwapFree’ /proc/meminfo |

cut -b15-23) >> "$OUT"

# Process resources
for ((I=0; $I<$INSTANCES; I++))
do

if [ -e "${INST_PREFIX}${I}/proc_stat" ]; then
echo -n \

" $(awk ’{ print $22,$14,$15 }’ "${INST_PREFIX}${I}/proc_stat")" \
>> "$OUT"

else
echo -n " -1 -1 -1" >> "$OUT"

fi
done

echo "" >> "$OUT"

sleep $EVERY_SECS

done

E.2.4 RunSingle.sh

This script, called by SimuPerfMon, launches the AliRoot pp simulation used in
performance monitoring tests. The script takes care of multiple instances by allowing
them to run in parallel without writing the same output files but using different
folders.

#!/bin/bash

# RunSingle.sh



E.2 – MOVING AND MONITORING RESOURCES 153

# * Original file by Francesco Prino
# * Heavily adapted for benchmarking by Dario Berzano

if [ $# -lt 5 ]; then
echo "Usage: $0 <suffix> <num_of_events> \\"
echo " <scripts_dir> <bench_dir> <data_dir>"
exit 1

fi

# Command-line parameters
SUFFIX="_$1"
NEV="$2"
SCRIPTS_DIR="$3"
BENCH_DIR="$4"
DATA_DIR="$5"

# Load aliroot environment variables
source "$SCRIPTS_DIR/env.sh"

# Dir. output risp. a dir. corrente
RUN="$BENCH_DIR/Instance$SUFFIX"

# Simulation parameters
export RANDSEED=123456
export NPARTICLES=10

mkdir -p "$RUN"
cd "$RUN"

while [ 1 ]
do

rm -rf *

# Creates output file with timings
touch "$DATA_DIR/evtiming$SUFFIX.out"

# Temporary file with timings
TEMP_TIME=$(mktemp "$DATA_DIR/time.XXXXX")

# AliRoot called with a system stopwatch
/usr/bin/time -f "%U %S %E" -a -o "$TEMP_TIME" \
aliroot -b <<EOI > "gen.log"
TString c = TString::Format("ln -s /proc/%d/stat proc_stat", gSystem->GetPid());
system(c.Data());
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AliSimulation sim("$SCRIPTS_DIR/Config.C");
sim.SetQA(0);
sim.Run($NEV);
.q
EOI

# Simulation finished: collect data in an ordered mode
UPTIME="$(cut -d’ ’ -f1 /proc/uptime)"

echo $UPTIME $(cat "$TEMP_TIME") >> "$DATA_DIR/evtiming$SUFFIX.out"
rm "$TEMP_TIME"

done

E.3 Scalla/PROOF configuration files

E.3.1 vaf.cf

This configuration file is read by xrootd, cmsd and the PROOF plugin, both on the
master node and the slave nodes. Note the use of if directives. Full documentation
of configuration directives for the latest version can be found on http://xrootd.
slac.stanford.edu/#cvsheaddoc.

# vaf.cf -- configuration file for xrootd/cmsd/PROOF
# by Dario Berzano <dario.berzano@gmail.com>

# Rootsys
xpd.rootsys /opt/vafsw/root/trunk
#xpd.rootsys /opt/root/default

# Fslib
xrootd.fslib libXrdOfs.so

# Specify the cms manager of the network, and its port.
all.manager proof.to.infn.it:1213

# Manager or server? The manager cannot serve files, but it can only act as a
# redirector!
xrd.port any

if proof.to.infn.it
#xrootd.redirect all
xrd.port 1094
all.role manager

http://xrootd.slac.stanford.edu/#cvsheaddoc
http://xrootd.slac.stanford.edu/#cvsheaddoc
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xpd.role any
else
all.role server
xpd.role worker
fi

# What to export? Default is r/w!
all.export /pool/box
all.export /pool/space

# Which machines are allowed to connect?
cms.allow host proof*
cms.allow host vaf-proof-*

# Adminpath
all.adminpath /var/run/xrootd-adm

### The PROOF part ###

if exec xrootd
xrd.protocol xproofd:1093 libXrdProofd.so
fi

# The working directory for proof
xpd.workdir /pool/box

xpd.poolurl root://proof
xpd.namespace /pool/space

oss.cache public /pool/cache*
oss.path /pool/space r/w

# The resource finder for PROOF, i.e.: where are the workers?
xpd.resource static /opt/vafsw/proof.conf

# GSI Authentication
xpd.seclib libXrdSec.so
sec.protparm gsi -gmapfun:/opt/vafsw/root/trunk/lib/libXrdSecgsiGMAPLDAP.so
sec.protparm gsi -gmapfunparms:/opt/vafsw/XrdSecgsiGMAPFunLDAP.cf
sec.protparm gsi -gridmap:/opt/vafsw/grid-mapfile
xpd.sec.protocol gsi -crl:1 -dlgpxy:1 -cert:/opt/vafsw/globus/pmaster-20081227-c

ert.pem -key:/opt/vafsw/globus/pmaster-20081227-key.pem -certdir:/opt/vafsw/al
ien/globus/share/certificates -d:0

### The master needs this to authenticate the workers
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### DO NOT PUT ANY DOUBLE QUOTES!
### I.E.: XrdBlaBla="ciao" != XrdBlaBla=ciao
# Environment variables to put in proofsrv.exe environments.
xpd.putenv XrdSecGSICADIR=/opt/vafsw/alien/globus/share/certificates
xpd.putenv XrdSecGSISRVNAMES=pmaster.to.infn.it

E.3.2 proof.conf

PROOF static resources configuration file. Since the current version of PROOF is
only able to use this static file as resource finder and our facility needs resources to
be configured dynamically, this file is dynamically generated by the resources control
script of the VAF. When modified, xrootd does not need to be restarted in order
to apply changes, since this file is read every time a new PROOF session is started.
There’s no possibility to specify the number of workers per each machine, so the
worker line has to be repeated several times (one per core in this example).

# Generated by vafmon:/root/VafManagement/VafMoveResources
# By Dario Berzano <dario.berzano@gmail.com>

master proof

# PROOF node on vaf-dom0-001
worker vaf-proof-001
worker vaf-proof-001
worker vaf-proof-001
worker vaf-proof-001
worker vaf-proof-001
worker vaf-proof-001
worker vaf-proof-001
worker vaf-proof-001

# PROOF node on vaf-dom0-002
worker vaf-proof-002
worker vaf-proof-002
worker vaf-proof-002
worker vaf-proof-002
worker vaf-proof-002
worker vaf-proof-002
worker vaf-proof-002
worker vaf-proof-002

# PROOF node on vaf-dom0-003
worker vaf-proof-003
worker vaf-proof-003
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worker vaf-proof-003
worker vaf-proof-003
worker vaf-proof-003
worker vaf-proof-003
worker vaf-proof-003
worker vaf-proof-003

# PROOF node on vaf-dom0-004
worker vaf-proof-004
worker vaf-proof-004
worker vaf-proof-004
worker vaf-proof-004
worker vaf-proof-004
worker vaf-proof-004
worker vaf-proof-004
worker vaf-proof-004

E.3.3 grid-mapfile

An example line of the grid-mapfile follows:

"/C=IT/O=INFN/OU=Personal Certificate/L=Torino/CN=Dario Carlo \
Domenico BERZANO" dberzano,guest,testuser1,testuser2

where the user with that certificate subject is statically mapped to four comma-
separated Unix users on each machine. This file is actually empty on the present
VAF configuration (but its presence is mandatory or else xrootd fails to load), and
it has a debug purpose: mapping the administrator’s subject to a certain user may
help solving user-specific problems without actually using the user’s key, which
needs a passphrase to be unlocked.

E.3.4 XrdSecgsiGMAPFunLDAP.cf

Specifies the LDAP server where to search for a matching user name by certificate
subject.

srv: ldap://aliendb06a.cern.ch:8389
base: ou=People,o=alice,dc=cern,dc=ch
attr: uid

E.4 VAF command-line utilities

For a description of these utilities, see § 3.1.5.
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E.4.1 ˜/.vafcfg

Every VAF utility needs the following variables to be set. These variables are stored
in the ~/.vafcfg file, source’d by the ~/.bashrc file with the following line of
code:

source ~/.vafcfg

# VAF Workers
export VAF_DOM0="vaf-dom0-001 vaf-dom0-002 vaf-dom0-003 vaf-dom0-004"

# VAF Workers
export VAF_WRK="vaf-proof-001 vaf-proof-002 vaf-proof-003 vaf-proof-004"

# VAF Master
export VAF_MST="proof"

# VAF Scripts Path
export VAF_MANAGEMENT_PATH="/root/VafManagement"

# The Path
export PATH="$PATH:$VAF_MANAGEMENT_PATH"

E.4.2 VafBroadcast

#!/bin/bash

#
# Global variables
#

NODES=""
CMD=""

#
# Entry point
#

while [ $# -ge 1 ]
do

if [ "${1:0:2}" == "--" ]; then
PARAM=${1:2}

elif [ "${1:0:1}" == "-" ]; then
PARAM=${1:1}
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else
PARAM=""
CMD="$1"

fi

case $PARAM in

master|m)
NODES="$NODES $VAF_MST"

;;

dom0|d)
NODES="$NODES $VAF_DOM0"

;;

workers|w)
NODES="$NODES $VAF_WRK"

;;

esac

shift

done

#
# Execute commands
#

if [ "$CMD" == "" ] || [ "$NODES" == "" ]; then

echo ""
echo "Usage: VafBroadcast <hosts> \"<command>\""
echo ""
echo "Where <hosts> can be one or more of:"
echo ""
echo " --workers [-w] all PROOF workers"
echo " --dom0 [-d] all dom0s"
echo " --master [-m] the PROOF master"
echo ""

else

for N in $NODES
do
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echo "==> $N <=="
ssh $N "$CMD"

done

fi

E.4.3 VafCopyPublicKey

#!/bin/bash

if [ "$1" == "" ]; then
echo "Usage: $0 <hostname>"

else
echo "Creating .ssh directory..."
ssh root@"$1" ’( mkdir -p ~/.ssh )’

if [ "$?" == 0 ]; then
echo "Copying authorized_keys..."
scp /root/.ssh/id_rsa.pub root@"$1":~/.ssh/authorized_keys

if [ "$?" == 0 ]; then
echo "Done!"

else
echo "Copying authorized_keys failed!"

fi
else

echo "Creation of .ssh failed!"
fi

fi

E.4.4 VafMoveResources

#!/bin/bash

#
# Start and stop xrootd and cmsd.
#
# by Dario Berzano <dario.berzano@gmail.com>
#
# This script is distribution-agnostic (i.e. should run flawlessly on any Linux
# distribution). Every configuration variable needed to run xrootd and cmsd can
# be set here: no other files are needed.
#
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#
# Global variables
#

# Where is everything installed
PREFIX="/opt/vafsw"

# Binaries of xrootd and cmsd
XROOTD_BIN="$PREFIX/root/trunk/bin/xrootd"
CMSD_BIN="$PREFIX/root/trunk/bin/cmsd"

# xrootd libraries
XROOTD_LIB="$PREFIX/root/trunk/lib"
CMSD_LIB="$PREFIX/root/trunk/lib"

# Log directory (hostname based)
LOG_DIR="/var/xrootd/VafLogs/‘hostname -s‘"

# xrootd
XROOTD_USER="xrootd"
XROOTD_LOG="$LOG_DIR/xrootd.log"
XROOTD_CF="/opt/vafsw/vaf.cf"
XROOTD_EXTRAOPTS=""

# cmsd
CMSD_USER="xrootd"
CMSD_LOG="$LOG_DIR/cmsd.log"
CMSD_CF="$XROOTD_CF"
CMSD_EXTRAOPTS=""

#
# Functions
#

# Is this terminal capable of colors?
function canColor() {

# TODO for now, skip the rest and always color...
return 1

if [ "$TERM" == "xterm-color" ]; then
return 1

fi

return 0
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}

# Echo function with a prefix
function vEcho() {

canColor

if [ $? == 1 ]; then
echo -e "\033[33m\033[1m[VafProof]\033[0m $@"

else
echo "[VafProof] $@"

fi

}

# Echo separators
function sEcho() {

canColor

if [ $? == 1 ]; then
vEcho "\033[31m===\033[0m \033[33m$@\033[0m \033[31m===\033[0m"

else
vEcho "=== $@ ==="

fi

}

# PID guessing
function GuessPids() {

XROOTD_PID=‘ps ax | grep -v grep | grep $XROOTD_BIN | awk ’{print $1}’‘
CMSD_PID=‘ps ax | grep -v grep | grep $CMSD_BIN | awk ’{print $1}’‘

}

# Start daemons
function Start() {

mkdir -p "$LOG_DIR"

touch $XROOTD_LOG
chown $XROOTD_USER "$XROOTD_LOG"

touch $CMSD_LOG
chown $CMSD_USER "$CMSD_LOG"
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# Admin directories with sockets - directly read from cf
XROOTD_ADM=‘grep adminpath "$XROOTD_CF" | awk ’{print $2}’‘
CMSD_ADM=‘grep adminpath "$CMSD_CF" | awk ’{print $2}’‘

mkdir -p "$XROOTD_ADM"
chown -R $XROOTD_USER "$XROOTD_ADM"

mkdir -p "$CMSD_ADM"
chown -R $CMSD_USER "$CMSD_ADM"

# TODO
# Maybe this method is better, don’t know...
#
#su $XROOTD_USER -c \
# "( export LD_LIBRARY_PATH=\"\$LD_LIBRARY_PATH:$XROOTD_LIB\" ;
# export XrdSecGSISRVNAMES=\"pmaster.to.infn.it\" ;
# $XROOTD_BIN -b -l $XROOTD_LOG -c $XROOTD_CF $XROOTD_EXTRAOPTS )"

vEcho "Starting xrootd"
( export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$XROOTD_LIB" ; $XROOTD_BIN -b \

-l $XROOTD_LOG -R $XROOTD_USER -c $XROOTD_CF $XROOTD_EXTRAOPTS )
vEcho "xrootd started"

vEcho "Starting cmsd"
( export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$XROOTD_LIB" ; $CMSD_BIN -b \

-l $CMSD_LOG -R $CMSD_USER -c $CMSD_CF $CMSD_EXTRAOPTS )
vEcho "cmsd started"

}

# Stop daemons
function Stop() {

GuessPids

if [ "$XROOTD_PID" != "" ]; then
vEcho "Stopping xrootd"
kill -9 $XROOTD_PID
vEcho "xrootd stopped"

else
vEcho "No running xrootd found, nothing stopped"

fi

if [ "$CMSD_PID" != "" ]; then
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vEcho "Stopping cmsd"
kill -9 $CMSD_PID
vEcho "cmsd stopped"

else
vEcho "No running cmsd found, nothing stopped"

fi
}

# Status
function Status() {

GuessPids

if [ "$XROOTD_PID" != "" ]; then
vEcho "xrootd is $RUNNING"

else
vEcho "xrootd is $NOT_RUNNING"

fi

if [ "$1" == "--logs" ]; then
sEcho "last lines of xrootd log"
tail -n10 "$XROOTD_LOG"
sEcho "EOF"

fi

if [ "$CMSD_PID" != "" ]; then
vEcho "cmsd is $RUNNING"

else
vEcho "cmsd is $NOT_RUNNING"

fi

if [ "$1" == "--logs" ]; then
sEcho "last lines of cmsd log"
tail -n10 "$CMSD_LOG"
sEcho "EOF"

fi
}

#
# Entry point
#

canColor

if [ $? == 1 ]; then
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RUNNING="\033[32mrunning\033[0m"
NOT_RUNNING="\033[31mNOT running!\033[0m"

else
RUNNING="running"
NOT_RUNNING="NOT running!"

fi

#
# Check user
#

if [ $USER != "root" ]; then
vEcho "Only root is allowed to run this script, aborting."
exit 1

fi

case "$1" in

start)
Start

;;

start-check)
Start
sleep 1
Status

;;

stop)
Stop

;;

restart)
Stop
Start

;;

restart-check)
Stop
Start
sleep 1
Status

;;

status)
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Status
;;

logs)
Status --logs

;;

*)
vEcho "Usage: $0 {start[-check]|stop|restart[-check]|status|logs}"

;;

esac

E.4.5 VafProfiles

#!/bin/bash

VAF_MOVE_RES="$VAF_MANAGEMENT_PATH/VafMoveResources"

# Majority of resources to PROOF
NAME[1]="proof"
PROF[1]="-d Domain-0 -m 7% -d proof -m 86% -c 800 -w 256 \

-d wnU -m 7% -c 100 -w 32 -p 8"

# Half memory each, PROOF has priority
NAME[2]="half-proof"
PROF[2]="-d Domain-0 -m 7% -d proof -m 46% -c 800 -w 256 \

-d wnU -m 47% -c 800 -w 32 -p 8"

# Half memory each, PROOF has priority, WN is stretched to one CPU
NAME[2]="halfmem-proof-prio"
PROF[2]="-d Domain-0 -m 7% -d proof -m 46% -c 800 -w 256 \

-d wnU -m 47% -c 100 -w 32 -p 8"

# Half memory each, no priority
NAME[3]="half-noprio"
PROF[3]="-d Domain-0 -m 7% -d proof -m 46% -c 800 -w 256 \

-d wnU -m 47% -c 800 -w 256 -p 8"

# Majority of resources to WN
NAME[4]="wn"
PROF[4]="-d Domain-0 -m 7% -d proof -m 7% -c 100 -w 32 \

-d wnU -m 86% -c 800 -w 256 -p 0"

LEN=${#PROF[@]}
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function List() {
for ((I=1; $I<=$LEN; I++))
do

echo ${NAME[$I]}: ${PROF[$I]}
done

}

function ShortList() {
echo -n "Choose one of: "
for ((I=1; $I<=$LEN; I++))
do

echo -n "${NAME[$I]} "
done
echo ""

}

function Set() {

if [ "$1" == "" ]; then
echo "set: profile name required."
ShortList
return 1

fi

# Search profile index
INDEX=-1

for ((I=1; $I<=$LEN; I++))
do

if [ "${NAME[$I]}" == "$1" ]; then
INDEX=$I
break

fi
done

if [ $INDEX == -1 ]; then
echo "set: profile \"$1\" not found."
ShortList
return 2

fi

# Run command
shift
$VAF_MOVE_RES $@ ${PROF[$INDEX]}
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}

case "$1" in

--list)
List

;;

--set)
shift
Set "$@"

;;

*)
echo "Usage: $0 {--set <profile_name> [options...]|--list}"

;;

esac

E.4.6 VafProof

E.4.6.1 Remote control from the head node

#!/bin/bash

VAFPROOF="/opt/vafsw/VafProof"

source ~/.vafcfg

for V in $VAF_MST $VAF_WRK
do

echo "==> Node $V <=="
ssh $V "$VAFPROOF $1"

done

E.4.6.2 Client script on each slave

#!/bin/bash

#
# Start and stop xrootd and cmsd.
#
# by Dario Berzano <dario.berzano@gmail.com>
#
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# This script is distribution-agnostic (i.e. should run flawlessly on any Linux
# distribution). Every configuration variable needed to run xrootd and cmsd can
# be set here: no other files are needed.
#

#
# Global variables
#

# Where is everything installed
PREFIX="/opt/vafsw"

# Binaries of xrootd and cmsd
XROOTD_BIN="$PREFIX/root/trunk/bin/xrootd"
CMSD_BIN="$PREFIX/root/trunk/bin/cmsd"

# xrootd libraries
XROOTD_LIB="$PREFIX/root/trunk/lib"
CMSD_LIB="$PREFIX/root/trunk/lib"

# Log directory (hostname based)
LOG_DIR="/var/xrootd/VafLogs/‘hostname -s‘"

# xrootd
XROOTD_USER="xrootd"
XROOTD_LOG="$LOG_DIR/xrootd.log"
XROOTD_CF="/opt/vafsw/vaf.cf"
XROOTD_EXTRAOPTS=""

# cmsd
CMSD_USER="xrootd"
CMSD_LOG="$LOG_DIR/cmsd.log"
CMSD_CF="$XROOTD_CF"
CMSD_EXTRAOPTS=""

#
# Functions
#

# Is this terminal capable of colors?
function canColor() {

# TODO for now, skip the rest and always color...
return 1
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if [ "$TERM" == "xterm-color" ]; then
return 1

fi

return 0

}

# Echo function with a prefix
function vEcho() {

canColor

if [ $? == 1 ]; then
echo -e "\033[33m\033[1m[VafProof]\033[0m $@"

else
echo "[VafProof] $@"

fi

}

# Echo separators
function sEcho() {

canColor

if [ $? == 1 ]; then
vEcho "\033[31m===\033[0m \033[33m$@\033[0m \033[31m===\033[0m"

else
vEcho "=== $@ ==="

fi

}

# PID guessing
function GuessPids() {

XROOTD_PID=‘ps ax | grep -v grep | grep $XROOTD_BIN | awk ’{print $1}’‘
CMSD_PID=‘ps ax | grep -v grep | grep $CMSD_BIN | awk ’{print $1}’‘

}

# Start daemons
function Start() {

mkdir -p "$LOG_DIR"
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touch $XROOTD_LOG
chown $XROOTD_USER "$XROOTD_LOG"

touch $CMSD_LOG
chown $CMSD_USER "$CMSD_LOG"

# Admin directories with sockets - directly read from cf
XROOTD_ADM=‘grep adminpath "$XROOTD_CF" | awk ’{print $2}’‘
CMSD_ADM=‘grep adminpath "$CMSD_CF" | awk ’{print $2}’‘

mkdir -p "$XROOTD_ADM"
chown -R $XROOTD_USER "$XROOTD_ADM"

mkdir -p "$CMSD_ADM"
chown -R $CMSD_USER "$CMSD_ADM"

# TODO
# Maybe this method is better, don’t know...
#
#su $XROOTD_USER -c \
# "( export LD_LIBRARY_PATH=\"\$LD_LIBRARY_PATH:$XROOTD_LIB\" ;
# export XrdSecGSISRVNAMES=\"pmaster.to.infn.it\" ;
# $XROOTD_BIN -b -l $XROOTD_LOG -c $XROOTD_CF $XROOTD_EXTRAOPTS )"

vEcho "Starting xrootd"
( export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$XROOTD_LIB" ; $XROOTD_BIN -b \

-l $XROOTD_LOG -R $XROOTD_USER -c $XROOTD_CF $XROOTD_EXTRAOPTS )
vEcho "xrootd started"

vEcho "Starting cmsd"
( export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$XROOTD_LIB" ; $CMSD_BIN -b \

-l $CMSD_LOG -R $CMSD_USER -c $CMSD_CF $CMSD_EXTRAOPTS )
vEcho "cmsd started"

}

# Stop daemons
function Stop() {

GuessPids

if [ "$XROOTD_PID" != "" ]; then
vEcho "Stopping xrootd"
kill -9 $XROOTD_PID
vEcho "xrootd stopped"



172 CODE LISTINGS

else
vEcho "No running xrootd found, nothing stopped"

fi

if [ "$CMSD_PID" != "" ]; then
vEcho "Stopping cmsd"
kill -9 $CMSD_PID
vEcho "cmsd stopped"

else
vEcho "No running cmsd found, nothing stopped"

fi
}

# Status
function Status() {

GuessPids

if [ "$XROOTD_PID" != "" ]; then
vEcho "xrootd is $RUNNING"

else
vEcho "xrootd is $NOT_RUNNING"

fi

if [ "$1" == "--logs" ]; then
sEcho "last lines of xrootd log"
tail -n10 "$XROOTD_LOG"
sEcho "EOF"

fi

if [ "$CMSD_PID" != "" ]; then
vEcho "cmsd is $RUNNING"

else
vEcho "cmsd is $NOT_RUNNING"

fi

if [ "$1" == "--logs" ]; then
sEcho "last lines of cmsd log"
tail -n10 "$CMSD_LOG"
sEcho "EOF"

fi
}

#
# Entry point
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#

canColor

if [ $? == 1 ]; then
RUNNING="\033[32mrunning\033[0m"
NOT_RUNNING="\033[31mNOT running!\033[0m"

else
RUNNING="running"
NOT_RUNNING="NOT running!"

fi

#
# Check user
#

if [ $USER != "root" ]; then
vEcho "Only root is allowed to run this script, aborting."
exit 1

fi

case "$1" in

start)
Start

;;

start-check)
Start
sleep 1
Status

;;

stop)
Stop

;;

restart)
Stop
Start

;;

restart-check)
Stop
Start
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sleep 1
Status

;;

status)
Status

;;

logs)
Status --logs

;;

*)
vEcho "Usage: $0 {start[-check]|stop|restart[-check]|status|logs}"

;;

esac

E.5 Use case: an analysis task that runs on PROOF

E.5.1 MakeESDInputChain.C

This macro produces a TChain from a list of ESDs given one by line in a text file.
If the input file cannot be read, an error message is printed and a null pointer is
returned.

TChain *MakeESDInputChainFromFile(TString esdListFn) {

TChain *chainESD = 0x0;
TString line;

ifstream is(esdListFn.Data());

if (is) {
chainESD = new TChain("esdTree");

while (is.good()) {
is >> line;
if (line.Length() > 0) {

chainESD->Add(line);
}

}

is.close();
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}
else {

Printf("Can’t open \"%s\" for reading: no chain has been created.",
esdListFn.Data());

}

return chainESD;
}

E.5.2 Analysis task that makes E and pt spectra

The original code of this class is used in the ALICE Offline Tutorial[20], so credits
go to its authors: Panos Cristakoglou, Jan Fiete Grosse-Oetringhaus and Christian
Klein-Boesing.

E.5.2.1 AliAnalysisTaskDistros.h

/*
* Example of an analysis task creating a p_t and E spectra: class definition.
*
* This is a slightly modified version of the example PROOF macro in the ALICE
* Offline Tutorial.
*/

#ifndef AliAnalysisTaskDistros_cxx
#define AliAnalysisTaskDistros_cxx

class TH1F;
class AliESDEvent;

#include "AliAnalysisTask.h"

class AliAnalysisTaskDistros : public AliAnalysisTask {

public:
AliAnalysisTaskDistros(const char *name = "AliAnalysisTaskDistros");
virtual ~AliAnalysisTaskDistros() {}

virtual void ConnectInputData(Option_t *);
virtual void CreateOutputObjects();
virtual void Exec(Option_t *option);
virtual void Terminate(Option_t *);

private:
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AliESDEvent *fESD; // ESD object
TH1F *fHistPt; // Pt spectrum
TH1F *fHistE; // Energy spectrum

AliAnalysisTaskDistros(const AliAnalysisTaskDistros&); // not implemented
AliAnalysisTaskDistros& operator=(const AliAnalysisTaskDistros&); // not implemented

ClassDef(AliAnalysisTaskDistros, 1); // example of analysis
};

#endif

E.5.2.2 AliAnalysisTaskDistros.cxx

/*
* Example of an analysis task creating a p_t and E spectra: implementation of
* the class.
*
* This is a slightly modified version of the example PROOF macro in the ALICE
* Offline Tutorial.
*/

#include "TChain.h"
#include "TTree.h"
#include "TH1F.h"
#include "TCanvas.h"

#include "AliAnalysisTask.h"
#include "AliAnalysisManager.h"

#include "AliESDEvent.h"
#include "AliESDInputHandler.h"

#include "AliAnalysisTaskDistros.h"

ClassImp(AliAnalysisTaskDistros);

AliAnalysisTaskDistros::AliAnalysisTaskDistros(const char *name) :
AliAnalysisTask(name, ""), fESD(0x0), fHistPt(0x0), fHistE(0x0) {

// Define input and output slots here

// Input slot #0 works with a TChain
DefineInput(0, TChain::Class());
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// Output slots #0, #1 write into a TH1 container
DefineOutput(0, TH1F::Class()); // Pt
DefineOutput(1, TH1F::Class()); // E

}

void AliAnalysisTaskDistros::ConnectInputData(Option_t *) {

TTree* tree = dynamic_cast<TTree*>( GetInputData(0) );

if (!tree) {
Printf("Error: could not read chain from input slot 0");

}
else {

// Disable all branches and enable only the needed ones
// The next two lines are different when data produced as AliESDEvent is read
// tree->SetBranchStatus("*", kFALSE);
// tree->SetBranchStatus("fTracks.*", kTRUE);

AliESDInputHandler *esdH = dynamic_cast<AliESDInputHandler*>(
AliAnalysisManager::GetAnalysisManager()->GetInputEventHandler() );

if (!esdH) {
Printf("Error: could not get ESDInputHandler");

}
else {

fESD = esdH->GetEvent();
}

}
}

void AliAnalysisTaskDistros::CreateOutputObjects() {

// Transverse momentum [GeV/c] distribution
fHistPt = new TH1F("fHistPt", "Transverse momentum distribution", 50, 0., 5.);
fHistPt->GetXaxis()->SetTitle("p_{t} [GeV/c]");
fHistPt->GetYaxis()->SetTitle("dN/dp_{t} [1/(GeV/c)]");
fHistPt->SetMarkerStyle(kFullCircle);

// Energy distribution [GeV] distribution
fHistE = new TH1F("fHistE", "Energy distribution", 50, 0., 5.);
fHistE->GetXaxis()->SetTitle("E [GeV]");
fHistE->GetYaxis()->SetTitle("dN/dE [1/GeV]");
fHistE->SetMarkerStyle(kFullCircle);
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}

void AliAnalysisTaskDistros::Exec(Option_t *) {
// Main loop
// Called for each event

if (!fESD) {
Printf("Error: fESD not available");
return;

}

Printf("There are %d tracks in this event", fESD->GetNumberOfTracks());

// Track loop to fill spectra
for (Int_t iTracks = 0; iTracks < fESD->GetNumberOfTracks(); iTracks++) {

AliESDtrack* track = fESD->GetTrack(iTracks);

if (!track) {
Printf("Error: Could not receive track %d", iTracks);
continue;

}

fHistPt->Fill(track->Pt());
fHistE->Fill(track->E());

}

// Post output data (first number should be the output container number);
PostData(0, fHistPt);
PostData(1, fHistE);

}

//________________________________________________________________________
void AliAnalysisTaskDistros::Terminate(Option_t *) {

// Draw result to the screen
// Called once at the end of the query

fHistPt = dynamic_cast<TH1F*>( GetOutputData(0) );
fHistE = dynamic_cast<TH1F*>( GetOutputData(1) );

if ((!fHistPt) || (!fHistE)) {
Printf("Error: some histograms are not available!");
return;

}
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TCanvas *c1 = new TCanvas("cPt", "Pt spectrum");
c1->cd(1)->SetLogy();
fHistPt->DrawCopy("E");

TCanvas *c2 = new TCanvas("cE", "E spectrum");
c2->cd(1)->SetLogy();
fHistE->DrawCopy("E");

}

E.5.3 run.C

This macro is able to run the analysis on a given list of files either locally or on
PROOF: this parameter is not hardcoded, thus it can be changed at runtime.

/*
* Test macro for an AliAnalysisTask.
*
* It can run in "local", "proof" or "grid" mode: you can specify it when
* loading the macro.
*/

void run(TString analysisMode = "local", TString esdListFn = "ESDList.txt",
TString proofServer = "proof") {

Bool_t useParFiles = kFALSE;

gROOT->LoadMacro("MakeESDInputChain.C");

if (analysisMode == "proof") {
TProof::Open(proofServer.Data());

if ( gProof->UploadPackage("VAF") ) {
Printf("The package cannot be uploaded: analysis aborted.");
return;

}

if ( gProof->EnablePackage("VAF") ) {
Printf("The package cannot be enabled: analysis aborted.");
return;

}

if ( gProof->Load("AliAnalysisTaskDistros.cxx+") ) {
Printf("The AnalysisTask cannot be loaded on PROOF: analysis aborted.");

}
}
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else {

TString libs("libVMC,libNet,libTree,libPhysics,libSTEERBase,libANALYSIS,"
"libESD,libAOD,libANALYSISalice,libRAWDatabase,libRAWDatarec,libProof,"
"libCDB,libSTEER,libMinuit,libTPCbase,libTPCrec");

TObjArray *tok = libs.Tokenize(",");
TIter i(tok);
TObjString *l = 0x0;

while (l = (TObjString *)i.Next()) {
if ( gSystem->Load(l->GetString()) < 0 ) {

Printf("Unable to load library \"%s\": aborting analysis.",
(l->GetString()).Data());

}
}

tok->SetOwner(kTRUE);
delete tok;

// Uncomment to test if libraries are loaded. This is useful in order to
// avoid error messages while loading files like:
//
// Warning in <TClass::TClass>: no dictionary for class [...]
//
//TFile::Open("root://proof//pool/space/dberzano/Bala/ESDs/180110/001/"
// "AliESDs.root");
//return;

gROOT->ProcessLine(".include $ALICE_ROOT/include");

if ( gROOT->LoadMacro("AliAnalysisTaskDistros.cxx+") < 0 ) {
Printf("The AnalysisTask can not be loaded: aborting analysis.");
return;

}
}

// Files are taken from the Grid in the form alien://[...]
if (analysisMode == "grid")

TGrid::Connect("alien:", 0, 0, "t");

TChain *chainESD = 0x0;

chainESD = MakeESDInputChainFromFile(esdListFn);
if (chainESD == 0x0) {
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Printf("No chain was created: aborting analysis.");
return;

}

// Create the analysis manager
AliAnalysisManager *mgr = new AliAnalysisManager("MyManager", "MyManager");
mgr->SetDebugLevel(0);

// Input
AliESDInputHandler *inputHandler = new AliESDInputHandler();
mgr->SetInputEventHandler(inputHandler);

// Aanalysis task
AliAnalysisTaskDistros *task = new AliAnalysisTaskDistros();
//task->SetDebugLevel(0);
mgr->AddTask(task);

// Create containers for input/output and connect to slots
AliAnalysisDataContainer *cInput = mgr->CreateContainer("cInput",

TChain::Class(), AliAnalysisManager::kInputContainer);
mgr->ConnectInput( task, 0, mgr->GetCommonInputContainer() );

AliAnalysisDataContainer *cOutput0 = mgr->CreateContainer("cOutput0",
TH1::Class(), AliAnalysisManager::kOutputContainer, "Distros.root");

mgr->ConnectOutput( task, 0, cOutput0 );

AliAnalysisDataContainer *cOutput1 = mgr->CreateContainer("cOutput1",
TH1::Class(), AliAnalysisManager::kOutputContainer, "Distros.root");

mgr->ConnectOutput( task, 1, cOutput1 );

// Run the analysis
Printf( "Loaded chain has %d entries.\n", (Int_t)(chainESD->GetEntries()) );

// Timings, start
TStopwatch cron;
cron.Start();

if (mgr->InitAnalysis()) {
mgr->PrintStatus();
mgr->StartAnalysis(analysisMode, chainESD);

}

// Timings, stop
Printf("Time for analysis execution (excluding chain creation) follows.");
cron.Stop();
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cron.Print();
}



List of Acronyms

AJAX Asynchronous JavaScript And XML, an “umbrella term” that
describes the technoogies used to dynamically send data to web
pages without reloading them, by separating content from layout

ALICE A Large Ion Collider Experiment

ATLAS A Toroidal LHC ApparatuS

AOD Analysis Object Dataset

AliEn ALICE Environment

ARDA A Realisation of Distributed Analysis for LHC

CAF CERN Analysis Facility

CERN Organisation Européenne pour la Recherche Nucléaire

CE Computing Element

CMS Compact Muon Solenoid

CMS Content Management System

DCA Distance of Closest Approach

DHCP Dynamic Host Configuration Protocol

DNS Domain Name Server

EMCAL Electromagnetic Calorimeter

ESD Event Summary Data

FC File Catalogue, referred to an AliEn facility

FMS Forward Muon Spectrometer
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FUSE File System in User Space

GSI Grid Security Infrastructure

GUID Global Unique Identifier, an unique identifier used as a file name in
AliEn

GWT Google Web Toolkit, a toolkit developed by Google to write web
applications in Java that takes care of multibrowser compatibility
and JavaScript+HTML translation

HA High-Availability

HBT Hanbury-Brown Twiss

HEP High-Energy Physics

HPC High-Performance Computing

HTTP Hypertext Transfer Protocol

HVM Hardware Virtual Machine

ITS Inner Tracking System

TPC Time Projection Chamber

TRD Transition-Radiation Detector

KVM Kernel-based Virtual Machine

KVM Keyboard Video Mouse

LCG LHC Computing Grid

LDAP Lightweight Directory Access Protocol

LFN Logical File Name

LHC Large Hadron Collider

LHCb Large Hadron Collider Beauty

LVM Logical Volume Manager

MONARC Models of Networked Analysis at Regional Centres

MRPC Multigap Resistive Plate Chamber
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MSS Mass-Storage System

MWPC Multi-Wire Proportional Chamber

NAS Network-Attached Storage

NAT Network Address Translation

NFS Network File System

NLO Next-to-Leading Order

NTP Network Time Protocol, a simple protocol used to transport time
onto a network for automatic time synchronization

OLTP On-Line Transaction Processing, a class of systems that facilitate
and manage transaction-oriented applications, typically for data
entry and retrieval transaction processing

OO Object-Oriented

PDC Physics Data Challenge

PDF Parton Distribution Function

PFN Physical File Name

PHP PHP: Hypertext Preprocessor, one of the most popular server-side
languages for generating dynamic web pages

PID Particle Identification

PMU Performance Monitoring Unit

POD PROOF On Demand

POSIX Portable Operating System Interface, formerly known as IEEE-IX

pQCD Perturbative QCD

PROOF Parallel ROOT Facility

PXE Preboot Execution Environment

QCD Quantum Chromodynamics

QGP Quark-Gluon Plasma

QoS Quality of Service
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RAID Redundant Array of Inexpensive Disks

RHIC Relativistic Heavy-Ion Collider, placed at the Brookhaven National
Laboratory in Upton, NY

RICH Ring Imaging Čerenkov

RPC Resistive Plate Chamber

SAN Storage Area Network

SAS Serial Attached SCSI, see
http://en.wikipedia.org/wiki/Serial_Attached_SCSI

SDD Silicon Drift Detector

SE Storage Element

SOAP Simple Object Access Protocol

SPD Silicon Pixel Detector

SQL Structured Query Language

SSH Secure Shell

TFTP Trivial File Transfer Protocol, a lightweight file transfer protocol
that runs on top of UDP

TOF Time Of Flight

PHOS Photon Spectrometer

HMPID High-Momentum Particle Identification

TQ Task Queue

VAF Virtual Analysis Facility

VBD Virtual Block Device

VCPU Virtual CPU, a CPU as seen by the VM with no exact
correspondence with a physical CPU

VMM Virtual Machine Monitor

VM Virtual Machine

VO Virtual Organization

http://en.wikipedia.org/wiki/Serial_Attached_SCSI
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WN Worker Node

ZDC Zero-Degree Calorimeter

FMD Forward Multiplicity Detector

PMD Photon Multiplicity Detector

iLO Integrated Lights-Out
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