Particle Identification in the Inner Tracking System of ALICE

Emanuele Biolcati
for the ALICE Collaboration

Università e INFN di Torino

V Convegno Nazionale sulla Fisica di ALICE
Trieste - September, 14 2009
1 Introduction
 - PID in ITS

2 SDD calibration
 - SDD effect correction

3 PID2 algorithm
 - The Bayesian approach
 - PID results

4 Conclusion
Reconstruction of primary vertex with resolution below 100 µm

Prolong TPC tracks to the primary vertex. ITS crucial for p_t and impact parameter resolution

Track and identify particles missed by the TPC (p_t cutoff, decays, acceptance)

Detection of secondary vertices from hyperons, K_s^0 and heavy flavor decays
Features of ITS as standalone tracker
(Thanks to Francesco Prino and Andrea Dainese)

Resolution

Comparable resolution for ITS standalone and ITS+TPC tracks

Efficiency

ITS standalone

Importance of extending seeding to outer layers

Reconstructed / trackable

Physical Tracking Efficiency (-0.9 < η < 0.9)

Reconstructed / Generated

ITS standalone allows to recover particles not reconstructed in TPC
The PID in the ITS

Simulation of p-p events

Possible to distinguish p, K and π only

PID in ITS will be important for all tracks missed by TPC ($\approx 10\%$)

PID in ITS is crucial when ITS is used as a standalone tracker
PID algorithm in ITS

AliITSpidESD1.h

- \(dE/dx \) obtained as truncated mean of the cluster charge read by the 4 ITS outer layers (tails cut \(\rightarrow \) distributions fitted by a Gaussian)
- conditional probabilities calculated from a sigma cut of \(dE/dx \) value obtained with the Bethe-Bloch formula for a given particle with a given momentum

AliITSpidESD2.h

- based\(^1\) on the convoluted Landau-Gaussian fits to the \(dE/dx \)
- signal from each SDD and SSD layer individually treated

\(^1\) E. Bruna, *Response functions for Particle Identification in the Inner Tracking System*, ALICE Internal Note (October 2006)
Introduction
- PID in ITS

SDD calibration
- SDD effect correction

PID2 algorithm
- The Bayesian approach
- PID results

Conclusion
Electron cloud, generated in the Si, spreads during the drift
Signal tails could be cut by the zero-suppression algorithm
For each SDD layer, charge distributions plotted in drift time bins and fitted by Landau+Gaussian convolution
Fit parameter plotted versus drift time (next slide)
Particle Identification in the Inner Tracking System of ALICE

Introduction

PID in ITS

SDD calibration

SDD effect correction

PID2 algorithm

The Bayesian approach

PID results

Conclusion

SDD: drift time dependence, results for layer 3

p-p events simulation

Dependence on drift time (data are zero-suppressed)

Cosmic data in Turin, single module

No dependence on drift time for non zero-suppressed data
SDD: correction for zero suppression

Correction in the code:

```cpp
q /= rsdd->GetADC2keV();
q += (driftTime * rsdd->GetChargevsTime());
```

![Graph showing simulation and data with Landau MPV vs Drift Time](image)
Introduction

- PID in ITS

SDD calibration

- SDD effect correction

PID2 algorithm

- The Bayesian approach
- PID results

Conclusion
PID2 status

Done:
- $Pb - Pb$ events (by Elena Bruna) but...
 - response functions $R(S)$ obtained with old ADC charge scale and old detector description
 - possible differences with respect to $p-p$ events
 - correction for detector systematics (i.e. SDD drift time)

On going:
- $R(S)$ with new keV charge scale
- $p-p$ events

To do:
- cosmics: comparison between simulation and reconstruction to validate the $R(S)$
- $Pb - Pb$ events
Evaluation of the response functions:

- Event generation (PYTHIA or HIJING)
- Tracking in ITS (tracks with 4 clusters in SDD and SSD)
- For each reconstructed track, all the 4 charge signals coming from the 4 different layers (SDD+SSD) retrieved
- dE/dx histograms in momentum slices 0.032 GeV/c wide
- For each momentum bin, dE/dx distribution for p, K, π ($i.e.$ $R(S)$) fitted by Landau-Gaussian convolution
- Four fit parameters:
 - Width Landau (WL)
 - Most Probable Value (MP)
 - Total Area (neglected)
 - Width Gaussian (WG)
- $R(S)$ normalized to its total area
PID2 algorithm II

- Fit parameters plotted versus momentum bins and fitted by ad hoc functions: \(f_{WL}, f_{MP}, f_{WG} \):

\[
\begin{align*}
\text{Pions} & \\
& \begin{cases}
 f_{WL} = A + \frac{B}{p^2} + \frac{C}{p^2} \log p^2 \\
 f_{MP} = A + \frac{B}{p^2} + \frac{C}{p^2} \log p^2 \\
 f_{WG} = A + \frac{B}{p^2} + \frac{C}{p^2} \log p^2
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\text{Kaons, Protons} & \\
& \begin{cases}
 f_{WL} = A + \frac{B}{p^2} \\
 f_{MP} = A + \frac{B}{p^2} + \frac{C}{p^2} \log p^2 \\
 f_{WG} = A + \frac{B}{p^2} + \frac{C}{p^2} \log p^2
\end{cases}
\end{align*}
\]

- Bayesian approach: probability for a track of momentum \(p \), with measured \(dE/dx \), to be of type \(i \):

\[
P(i|S) = \frac{R(S|i)P(i)}{\sum_{t=p,K,\pi} R(S|t)P(t)}
\]

where \(S=dE/dx \), \(P(i) \) are the priors

- Recursive method:
 - first step: \(P(i) = \frac{1}{3} \) for \(\pi, K, p \)
 - next steps: \(P'(i) = \frac{N_i}{N_{tot}} \), where \(N_i \) particles with \(P(i|S) > \text{threshold} \)
Binning in momentum

- For each particle specie, for each layer (SDD and SSD), binning in momentum is performed
- 50 bins 32 MeV/c wide, from 0 to 1.6 GeV
- Fit parameters are stored to be plotted versus momentum

Example

Layer 4
Particle π
$P \in [320 \, \text{MeV}, 352 \, \text{MeV}]$

Estimation of resolution
$\sqrt{WL^2 + WG^2} \simeq 10 \, \text{keV}$
Fit parameters: p-p events, layer 3 SDD, pions

WL_layer2

$\chi^2 / \text{ndf} = 18.41 / 46$

Prob = 0.9999

$p_0 = 0.3812 \pm 0.064$

$p_1 = 0.07207 \pm 0.01632$

$p_2 = 8.487 \pm 0.1405$

MPV_layer2

$\chi^2 / \text{ndf} = 51.74 / 45$

Prob = 0.2274

$p_0 = 3.429 \pm 0.2824$

$p_1 = 0.502 \pm 0.06261$

$p_2 = 6.235 \pm 0.435$

$p_3 = 90.18 \pm 0.3921$

WG_layer2

$\chi^2 / \text{ndf} = 80.38 / 46$

Prob = 0.001278

$p_0 = -0.7642 \pm 0.1337$

$p_1 = -0.192 \pm 0.03411$

$p_2 = 14.77 \pm 0.2937$

Simulation

p-p events

layer: 3

particle code: 211
Fit parameters: p-p events, layer 4 SDD, protons

WL_layer3
- χ^2 / ndf: 213.6 / 31
- Prob: 3.769e-29
- p_0: 10.99 ± 3.459
- p_1: 4.458 ± 2.784
- p_2: 6.118 ± 3.011

MPV_layer3
- χ^2 / ndf: 173.6 / 30
- Prob: 3.821e-22
- p_0: 170.6 ± 31.27
- p_1: 41.23 ± 14.66
- p_2: 44.22 ± 15.3
- p_3: -13.03 ± 31.39

WG_layer3
- χ^2 / ndf: 1102 / 31
- Prob: 0
- p_0: 14.75 ± 7.857
- p_1: 9.992 ± 6.324
- p_2: 1.645 ± 6.84

Simulation
- p-p events
- layer: 4
- particle code: 2212
Particle Identification in the Inner Tracking System of ALICE

18/27
Emanuele Biolcati

Introduction
PID in ITS
SDD calibration
SDD effect correction
PID2 algorithm
The Bayesian approach
PID results
Conclusion

Fit parameters: p-p events, layer 5 SSD, kaons

Simulation
p-p events
layer: 5
particle code: 321
Contamination and efficiency: definition

- Test and improve of pidESD2:
 - check the $R(S)$ calculated by the recursive method
 - fine tuning of the ad hoc fit functions

- Using contamination/efficiency:
 \[
 \text{efficiency} = \frac{N_{\text{good}}}{N_{\text{true}}}
 \]
 \[
 \text{contamination} = \frac{N_{\text{fake}}}{N_{\text{identified}}}
 \]

- Using fractions (for example for π):
 \[
 N(\pi|\pi) = \frac{\text{true } \pi \text{ identified as } \pi}{\text{true } \pi}
 \]
 \[
 N(\pi|K) = \frac{\text{true } \pi \text{ identified as } K}{\text{true } \pi}
 \]
 \[
 N(\pi|p) = \frac{\text{true } \pi \text{ identified as } p}{\text{true } \pi}
 \]
Contamination and efficiency: kaons

Kaons (ITS)

kaons
300 k entries
p-p events
ITS standalone
Contamination and efficiency: pions

300 k entries
$p-p$ events
ITS standalone
Particle Identification in the Inner Tracking System of ALICE

1 Introduction
 - PID in ITS

2 SDD calibration
 - SDD effect correction

3 PID2 algorithm
 - The Bayesian approach
 - PID results

4 Conclusion
Conclusions

Landau+Gaussian PID in ITS

Work in progress to tune the response functions taking into account:
- new keV charge scale
- correction for detector systematics (i.e. SDD drift time)
- p-p events (simulation)

Results and future...

- Contamination and efficiency values good for low momentum particles
- To do: cross check using cosmic data
- Algorithm will be ready for first p-p collisions (data)
- It will be possible to perform dN/dp_t and dN/dy distributions using ITS in standalone mode → particles at lower p_t reach with respect to TPC based analysis
Particle Identification in the Inner Tracking System of ALICE

Emanuele Biolcati

Introduction

PID in ITS

SDD calibration

SDD effect correction

PID2 algorithm

The Bayesian approach

PID results

Conclusion

That’s all, thanks.
Part I

Backup slides
Zero-suppression effect simulation (I)

Signal read by anodes

Drift Coordinate

Anodic coordinate
Zero-suppression effect simulation (II)

Zero suppression effect

![Graph showing the relationship between integral of charge and drift path.]

- χ^2 / ndf: 2.743e-06 / 16
- p_0: 3.287 ± 0.0001963
- p_1: $-0.001492 \pm 1.045e-05$