The IMGC-02 Absolute Gravimeter

Emanuele Biolcati

Istituto Nazionale di Ricerca Metrologica
Istituto Nazionale di Geofisica e Vulcanologia

Cosenza - October 15, 2013
Absolute gravimeters, ballistic or atomic, can exploit:
- free fall motion
- rise and fall motion

Common units are:
$1 \mu\text{Gal} = 10^{-8} \text{m s}^{-2}$

Common features:
- repeatability of about $5 \mu\text{Gal}$
- extended uncertainty of about $15 \mu\text{Gal}$
- relative uncertainty of 10^{-9}
Completely developed at Turin, Italy as a prototype
Used both for research and measurement session
The idea:
• find a reference point
• throw up a test object in the vacuum
• measure the vertical distance between the object and the reference point
• measure the time of the flight
• reconstruct the trajectory
• calculate g

$$s(t) = \frac{1}{2} gt^2$$
Operating principle - real life

The real life:

- find a reference point realized with a quasi-inertial system cutting high frequency noise
- throw up a test object in the vacuum with a verticality of 50 μrad
- measure the vertical distance using interferometer and laser
- measure the time of the flight using an atomic clock
- reconstruct the trajectory starting from 700 asymmetric time-space coordinates
- calculate g using dedicated model and applied corrections
Main parts - scheme

1) launch system
2) measure system
3) front-end electronics
4) vacuum system

- seismometer
- interferometer
- photo-detector
- frame
- launch chamber
- laser
- computer
- electronics
Main parts - picture

1. launch system
2. measure system
3. front-end electronics
4. vacuum system
Launch system

test object

corner-cube prism (10 \(\mu \text{rad} \))
container of Aluminum
total mass of 78 g
accurately balanced
optical center \(\equiv \) center of mass

throw, catch, center

4 iron springs
recirculating ball slides
verticality adjusted up to 50 \(\mu \text{rad} \)
force of 70 N
path of 20 mm
Measure system

- quasi inertial system i.e. long period seismometer (20 s) with reference mirror
- Mach-Zender interferometer
- Aluminum structure
- optical fiber with adjustable mirrors to set the verticality of the beam
- photo-multiplier to detect the fringe signal
- quad-cell detector to monitor parasitic movements of the test objects
Front-end electronics and vacuum system

Front-end electronics

- Standard reference system of time and space:
 - Rubidium oscillator at $\nu = 10$ MHz
 - He-Ne laser $\lambda = 632$ nm
- PXI computer \rightarrow recording and processing data
- Auxiliar instruments
 - Barometer \rightarrow pressure correction
 - Vacuometer \rightarrow check the launch chamber pressure
 - Thermometer
- Trigger units and power supplies

Vacuum system

- Rotative mechanical vacuum pump $\rightarrow 10^{-3}$ mbar
- Turbo-molecular pump $\rightarrow 10^{-6}$ mbar
- Glass vacuum chamber
Data processing

The main algorithm for each drop:

1. start from a single array of N time values T_i
2. obtain space-time coordinates (T_i, S_i) as $S_i = N \cdot \lambda/2$
3. find the apex position and invert the fall branch coordinates
4. fit the trajectory using least square method
5. apply the correction and extract g.

![Graph showing time vs. station number and distance vs. time]
Some open issues

To achieve the requested accuracy, some issues must be monitored and investigated.

- **Trajectory.** Asymmetry of the parabola, *decalage* effect.

- **Physical model.** Linear or non-linear? Residual friction of the air? Drift effect?

- **Height.** The extracted g is referred to the of the trajectory? Best reference height? (warning: vertical gravity gradient $\approx 0.300 \, \mu\text{Gal/mm}$)

- **Drop goodness.** Is the drop vertical? Is it affected by rotation or shift during the flight (Coriolis force)?

- **Noise.** Electronics, human, floor recoil, temperature, humidity.
Corrections and uncertainty

For each drop, the following effects are corrected (if necessary) and accounted in the uncertainty budget.

Instrumental effects

Drag, outgassing, magnetic field, electrostatic field, air gap modulation, index of refraction, fringe timing, finite value of speed of light, radiation pressure → negligible

temperature gradient, self-attraction, laser beam verticality and divergence, clock delay, reference height → $u < 1 \, \mu\text{Gal}$

retroreflector balancing → $u \simeq 3.6 \, \mu\text{Gal}$

Site dependent effects

Polar motion, floor recoil → negligible

Atmospheric pressure, tide, ocean loading, standard deviation → $u < 2 \, \mu\text{Gal}$

Coriolis force $u \simeq 1.5 \, \mu\text{Gal}$

\Downarrow

⇒ combined uncertainty: $u \simeq 4.5 \, \mu\text{Gal}$
Example of measurement - 1

For each drop, a dedicated software process data on fly giving

- parameters from the least square fit
- reference height
- plot of the signal amplitude (to monitor verticality of the drop)
- plot of all processed drops versus time after application of Chauvenet criterion
Example of measurement - II

- tide correction values calculated using FORTRAN software
- local atmospheric pressure correction values
- values coming from fit about the friction effect

- list of enabled corrections
- average and last drop residuals coming from the fit
Conclusion

The IMGC-02 Absolute Gravimeter is used for:

- measurements of g with an accuracy of few parts in 10^9
 - for geophysical analysis: seismic, vulcanology, etc.
 - for metrological purposes: as the Watt balance, relativistic correction, International Comparisons, etc.
- detailed study on the parasitic effects can influence the measurements
- development of new and more transportable Absolute Gravimeters

Thanks for the attention.