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The Lagrangian statistics of relative dispersion in fully developed turbulence is numerically investigated. A
scaling range spanning many decades is achieved by generating a two-dimensional velocity field by means of
a stochastic process with prescribed statistics and of a dynamical itsbedl model with fluctuating char-
acteristic times. When the velocity field obeys Kolmogorov similarity, the Lagrangian statistics is self similar
and agrees with Richardson’s predictidioc. R. Soc. London Ser. A10, 709 (1926]. For intermittent
velocity fields the scaling laws for the Lagrangian statistics are found to depend on the Eulerian intermittency
in agreement with the multifractal description. As a consequence of the Kolmogorov law the Richardson law
for the variance of pair separation is, however, not affected by intermittency corrections. Moreover, Lagrangian
exponents do not depend on the particular Eulerian dynamics. A method of data analysis, based on fixed scale
statistics rather than usual fixed time statistics, is shown to give much wider scaling range, and should be
preferred for the analysis of experimental d4&1063-651X99)09112-4

PACS numbgs): 47.27.Qb, 47.27.Gs, 47.27.Eq

I. INTRODUCTION We then investigate the effects of Eulerian intermittency on
Lagrangian statistics. We find deviations of the scaling ex-
Understanding the statistics of particle pair dispersion inponents from Richardson’s values, i.e., “Lagrangian inter-
turbulent velocity fields is of great interest for both theoret-mittency.” These effects cannot be captured by dimensional
ical and practical implications. At variance with single par- arguments alone. The simplest step beyond dimensional
ticle dispersion, which depends mainly on large scale, energgnalysis is the extension of the multifractal description suc-
containing eddies, pair dispersion is driv@t least at inter- cessfully used for Eulerian statistics to Lagrangian quanti-
mediate timepby velocity fluctuations at scales comparableties. Our numerical simulations agree with the predictions of
with the pair separation. These small scale fluctuations arthe Lagrangian multifractal description.
thought to be independent of the details of the large scale To see possible effects of fluctuating characteristic times
flow [1]. Since fully developed turbulence displays well on the Lagrangian statistics, we also consider a velocity field
known, nontrivial universal features in the Eulerian statisticsgenerated by a shell model of turbulence. We find that rela-
of velocity differences[2,3], pair dispersion represents a tive dispersion scaling laws are not sensitive to the details of
starting point for the investigation of the general problem ofthe Eulerian dynamics.
the relationship between Eulerian and Lagrangian properties. The intermittency corrections to relative dispersion are
Moreover, a deep comprehension of relative dispersiomowever small. Moreover, they can be hidden by the finite
mechanisms is of fundamental importance from an applicascaling range. Huge Reynolds numbers are necessary in or-
tive point of view, for a correct modelization of small scale der to clearly resolve the scaling exponents. To partially
diffusion and mixing properties. overcome these difficulties, we propose a methodology for
Since the pioneering work by Richardspf, many ef-  the analysis of relative dispersion data based on Lagrangian
forts have been done to confirm his law experimenfdlor  statistics at fixed spatial particle separation. In particular, the
numerically[5—7]. Nevertheless, the main obstacle to a deepstatistics of “doubling times” — the time that two particles
investigation of relative dispersion in turbulence remains thespend to double their separation — seems a very promising
lack of sufficient statistics due to technical difficulties in tool in data analysis.
laboratory experiments and to the moderate inertial range In Sec. Il we address the problem of relative dispersion in
reached in direct numerical simulations. fully developed, homogeneous, and isotropic turbulence. In
In this paper we present a detailed investigation of theSec. Ill we propose a method to construct intermittent Eule-
statistics of relative dispersion from extensive direct numeri+ian velocity fields with prescribed intermittent properties. In
cal simulations of particle pairs advected by two-dimensionaBec. IV results on the Lagrangian statistics of particle pairs
synthetic turbulent velocity fields with prescribed Eulerianadvected by a nonintermittent Kolmogorov-like velocity
statistical features. First we consider the probability distribufield are presented. In Sec. V the method of doubling times is
tion of Lagrangian quantities in a self similar Kolmogorov- introduced, and its advantages over the usual fixed time sta-
like flow, and confirm the Richardson-Obukhov predictions.tistics are discussed. In Sec. VI we consider intermittent Eu-
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lerian velocity fields. The effects on the Lagrangian statistics We remark that predictiori4), being based on dimen-
are discussed in a multifractal framework and compared witlsional grounds, can be obtained starting from different as-

numerical data. In Sec. VII conclusions are drawn. sumptions. On the other hand, the Richardson fiEa (3)]
for the distance neighbor function depends on the details of
Il. RICHARDSON LAW the argument, and in particular on the validity of positi@n

) ) ) ) i _This is not the only possible form compatible with the
We consider the dispersion of pairs of particles passivelynown experimental data; indeed, in 1952, Batchelor pro-
advected by an homogeneous, isotropic, fully developed turygsed an alternative approach to the problem which led to a
bulent field. Due to the incompressibility of the velocity field jifferent (Gaussian p(R,t) [1]. As far as we know there is
the particles will, on average, separate one from anothegtjj| no clear evidence supporting one or another form of the
[8,9]. The statistics of particle pair separation is convenientlygistance neighbor function of particle pairs. The most recent

summarized by the probability density functip(R,t) of the  experimental resultgL0] support non-Gaussian tails close to
distance between pairs of particles at a given time, called thgye Richardson proposal.

distance neighbor functiohy Richardsor{4]. At this point two remarks are in order. First, the determi-
In view of the diffusive effect exerted by the turbulent nation of the specific functional dependencies — such as the
motion on the advected particles, Richardson argued that tr%ape of the distance-neighbor functip(R,t) — lies be-
time evolution of the distance neighbor function could beygng the possibilities of similarity hypotheses, and thus calls
described by a proper diffusion equation for additional hypotheses, like Eqdl) and(2). Second, dif-
PG Ip(R1) fusive approximations cannot describe intermittency effects
' :_( K(R) ' ) (1)  on Lagrangian statistics. We thus have to deal with supple-
Jt IR gy mentary hypotheses which have a considerable degree of ar-

bitrariness, and whose content can be mainly judgexbs-
teriori. In this respect the use of synthetic velocity fields
?epresents a flexible framework for a detailed analysis of pair
dispersion statistics.

with an R dependent scalar turbulent diffusivi§(R). From
a collection of experimental data, Richardson was able t
obtain his celebrated “4/3” law

K(R)=aR*3, 2)

where« is a constant. This choice for the diffusivity relied Il SYNTHETIC TURBULENT FIELD

mainly on empirical grounds: dependence of the vertical The generation of a synthetic turbulent field which repro-

eddy diffusivity in the atmosphere with the altitude. duces the relevant statistical features of fully developed tur-
In three dimensions the solution of EQ) is bulence is not an easy task. To obtain a physically sensible
9R23 evolution for the velocity field, the fact that each eddy is
p(R,t)=/\/‘(at)9lzeX[< _ ) 3 subject to the action of all other eddies must be consistently
4at included. Actually the overall effect amounts to only two

) o o , main contributions: the sweeping exerted by larger eddies
where\'is a normalization factor, which immediately leads g the shearing due to eddies of comparabie size. This is a
to the growth laws for the moments of particle separation: g hstantial simplification; nevertheless the problem of prop-

erly mimicking the sweeping effects is still unsolved. It is
(R”‘(t))zf dRR"p(R,t)~t3". (4) relatively easy to construct a spatial, time independent, self
affine, or multiaffine velocity field in any dimension. Then to
[let the particle separate some time evolution, at least in two
dimensions, has to be introduced. The time evolution of the
velocity field should be consistent with the field itself, i.e.,
the eddies should move with the local velocity itself. This is
the essence of the sweeping problem which has been ad-

Scaling (4) can also be derived by a simple dimensional
argument due to Obukhd\2], which uses the Kolmogorov
similarity law for the Eulerian velocity increments over a
distanceR in fully developed turbulence:

(| vE(R)|)=(|v(x+R)—v(x)|)~R3 (5)  dressed in different ways in previous worllg7].
In the study of particle pairs dispersion, and only in this
with R=|R|, and the particle pair separation equation case, we can overcome the sweeping problem by using

quasi-Lagrangian(QL) coordinates[11], i.e., a reference
frame attached to a fluid partictg(t). This choice bypasses
the problem of sweeping, since relative velocities are unaf-
fected by large scale advection, making the generation of
where sv(") represents the velocity difference evaluatedrealistic synthetic velocity fields simpler. The price to pay is
along the Lagrangian trajectory. Assuming téat")(R) has  that only the problem of two-particle dispersion can be well
the same scaling exponent |afv(®)(R)|, from Egs.(5) and  managed within this framework. The properties of single-
(6) one obtaingR?/dt~Rév(H(R) ~R*3 and hence the Ri- particle Lagrangian statistics, for example, cannot be consis-
chardson’s Ia\/\(R2>~t3 [cf. Eq. (4)]. The assumption that tently treated. Thus our method cannot deal with nonhomo-
the Lagrangian velocity difference has the same Kolmogorogeneous situations where the velocity statistics depend on the
scaling as the Eulerian one relies on the intuitive idea that theosition of the reference particle.

main contribution to the separation rate follows from eddies In the QL reference the first particle sits at the origin and
with a size comparable to the separation itself. is, by definition, at rest. The second particle is placed at

dR
— =5y
AR ®)
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distance(separationR and is advected by the QL velocity TABLE I. Theoretical and numerical fitted scaling exponent for
simulations with an intermittent velocity field. The number of shells
VYR D) =v(ri(t) + R t)—v(ry(t),t) (7)  is N=30, corresponding to an integral Reynolds number Re

=105, {p: Eulerian structure functions theoretical scaling expo-
wherev is the Eulerian velocity field and (t) the trajectory nents.{p"": Lagrangian structure function numerical scaling expo-
in the original reference frame of the particle placed at thenents.a,,: theoretical relative dispersion scaling exponent$™:
origin of the QL reference: numerical relative dispersion scaling exponeits- p: theoretical

doubling time scaling exponentﬁ';“m: numerical doubling time

d scaling exponents{SM: Eulerian scaling exponents for the shell
Gir(O=v(().0. ® o P
By this change of coordinates the problem of pair disperp o A A A e By g,f“"

sion in a Eulerian velocity field is reduced to the problem
of single particle dispersion in the QL velocity field 1
v@Y(r 1). It is easy to show that whenever one considers

0390 039 159 156 —-0.610 -0.62 0.39
0.719 074 3.00 294 —-1.281 —-1.28 0.73

homogeneous flowEl1], the QL velocity differences have 3 10 104 432 427 -20 -1.99 101
the same one-time statistical properties of the Eulerian oned4.  1.245 130 558 558 —-2755 -273 126
|ndeed, one has 5 1.461 1.54 6.80 6.88 —3.539 —3.49 1.49

6 1655 1.74 799 817 —4345 —-423 171
v/, t;n=v @I (r+/,t)—v@(r1)

=v(ry(t)+r+7,0)—v(ry(t)+r,t) and zero otherwise. Moreover we take

=ov( G +n). ©) Gi(6)=1, G A6)=cod26+g)), (14

Thus, assuming homogeneity and averaging over the refy, 4

ii=0 for j>2 , with ¢; quenched random phases.
erence trajectory, for the structure functions one finds v ) ¢ d P

This choice is rather general because it can be derived from
(QL)(/ +))P\ — B¢/ +\\P\ . L, the lowest order expansion for smalbf a generic stream-
(VR 0)) (V= D)) ~ /%, (10 function in QL coordinates.

where the exponent, is a convex function of, and {5 Under the usual locality conditions for infrared conver-

=1. gence,{,<p [12], the leading contribution to thpth order
When generating a synthetic velocity field for the particlestructure function follows from the term in su(®2) with r

pair dispersion we can fulfill a weaker condition requiring =2 ", and is given by(| ¢y o|P). Thus if ¢; ;(t) are sto-

scaling(10) to be satisfiednly along the line joining the two  chastic processes with characteristic times 2>, to en-

particles, since only moments ofQY along this direction sure the correct turnover time, zero mean &g, ;|”)

enter into the dynamics. This is a further substantial simpli-~ kfgp, scaling(10) will be accomplished.

fication: it is sufficient to build a QL velocity field with the An efficient way of to generate, ; is [13]

proper scaling in the radial direction only. Needless to say,

for three-particles dispersion a field with proper scaling in all &1, i(1)=0; j()z15(1)Z2;(t) - - - Z; (1), (15

directions must already be constructed. In the following we . . . . .

will consider only QL velocity fields, and the superscript will WN€reézi j are independent, positive definite, identically dis-

be omitted tributed random processes with a characteristic time
- . 72/3 . . .
We consider only the two-dimensional case, where we 2 ", Wh'lze 9i,j :irz%lndependent random processes with
can introduce a stream function for the QL velocity: zero mean(g; ;)~k; =", and characteristic time, . _
The scaling exponentg, are determined by the probabil-
v(r,t)=V X y(r,t). (11 ity distribution of z; ; via

The extension to three-dimensional velocity fields does not
. e L o =% —Iny(ZP).
present technical difficulties, but it is only more expensive in P 3
terms of numerical resources. Under isotropic conditions, the
stream function can be decomposed in radial octaves as The Kolmogorov scaling,= p/3 is recovered by fixing; ;
N n b (0 T}l. In trtl)elfollowilng Wef slr(ljall reﬁort Iresults for bo}h syn-
thetic turbulent velocity fields with Kolmogorov scali
W, 0,t)=21 ]Zl kéiF(kir)Gi,i(a)’ r=|rl, =p/3, and fields whose intermittency corrections to tt:?Kol-
(120  mogorov scaling are close to the experimental values for
‘ three dimensional turbulen¢é4]; see Table I.
wherek;=2'. Following a heuristic argument, one expects

that for a givenr sum(12) is essentially dominated by the |v. LAGRANGIAN STATISTICS IN THE ABSENCE OF

(16)

term with i such thatr~2~". This locality of contributions EULERIAN INTERMITTENCY
suggests a simple choice for the functional dependencies of ] o
the “basis functions When the advecting velocity field has Kolmogorov scal-

ing £,=p/3, one expects Richardson’s Ig#&?)~t* to hold.
F(x)=x?(1—x) for 0=<x=<1, (13 This is indeed very well verified in our numerical simula-
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FIG. 1. Average variance of pair separatig®?(t)) for simula-
tion with N=30 octaves averaged over*iealizations. The con-
tinuous line represents the Richardson scatihg

FIG. 3. Rescaled probability distribution functions of Lagrang-
ian velocity differencegrescaled witht'?) for the same values df
as in Fig. 2.

tions over a wide range of scales, as shown in Fig. 1. Th
Reynolds number for the synthetic Eulerian velocity field

: 43 P :
can be defined as Re(ky/ky)™, so that for this simulation Another interesting statistical quantity which can be in-

: _ 2
WltIr;rgm i?m\li\{Sri?;\é?gErenéglts. the distance neighbor function\/es“gat(?d Is the probgbility distribution functip(ov|t) of

p(R,t) in two dimensions should assume the self Sim“ar_l_agrangla_n velo_cny differencesv evaluated along the_ tra-
isotr’opic form jectory. Dimensional arguments lead ¢év?)~t, showing
the accelerating nature of Richardson disper$@inin Fig.
3 we plot the computeg, (v|t) as function ofdv/t2 The

P(Rt)=t 3D (R/t¥?), (170 collapse of curves for different timesdemonstrates the va-

lidity of the scaling assumption.

where®(¢) is a universal function whose shape cannot be
predicted from similarity hypotheses. We checked the valid- V. DOUBLING TIME STATISTICS

Iftuyngiicl)zr?é (v%/?h btﬁéeti%%g%:gf ar:/lérpaeréczledlasl::gg;Nn;aslghbor A closer look at Fig. 1 shows that the power-law scaling
ge sep © regime(R?(t))~t3 is observed only well inside the inertial

; ; 312y
The different curves collapse onto a unique cul&/t>); [gnge: the scaling range for relative dispersion is reduced

see F'|g.' 2. .Th? collapse |nd!cates that the Process 1s Inde‘?/wth respect to the Eulerian inertial range. To understand this
self similar in time. The continuous line in this figure is the

Richardson predictior (&) =exp(—b&3), [cf. Eq.(3)], and effect consider a series of particle pair dispersion experi-

is in good agreement with the numerical data. The distanccranents’ in which a couple of particles is released at ttme

neighbor functions obtained in our simulations clearly devi-_”0 \(/jwth initial sep;ara‘uorRo. At a fixed t'mlftdl.'ffas |stusu— -
ates from the Gaussian proposal of Batchgldr(see Fig. 2, ally done, we per ormzan average over all ditterent experi
and give strong support to the original Richardson predic-mentS and computeR (tl).>' It IS Clear th%t’ unles$1” S
large enough that all particle pairs have “forgotten” their
initial conditions, our average will be biased. This is at the
origin of the flattening of R?(t)) for small times, which we
can call a crossover from an initial condition dominated re-
gime to a self similar regime. A similar effect is observed for
times of the order of the integral time scale, since some
particle pairs might have reached a separation larger than the
integral scale and thus diffused normally, biasing the aver-
age, so that the curwR?(t)) flattened again. This effect is
particularly evident for low Reynolds numbers, as shown in
Fig. 4 for a simulation with Re10®. This correction to a
pure power law is far from being negligible, especially in
/ \ experimental and direct numerical simulation data where the
0-01_0_6 YT o 02 o4 06 inertial range is generally limited by low Reynolds numbers
a and/or experimental apparatus. For example, Rigfsly]
R/t show quite clearly the difficulties that may arise in numerical
FIG. 2. Rescaled probability distribution functions of separa-Simulations with the standard approach.
tions as function ofR/t? for the simulation of Fig. 1 and To overcome this difficulty we propose an alternative ap-
=1073(*), t=10"2(x), and t=0.25(+). The continuous line pProach based on statistics at a fixed spatial scale. The method
represents the Richardson distributi@, and the dashed line is the is in the spirit of a recently introduced generalization of the
Gaussian distribution. Lyapunov exponent to finite size perturbati¢finite size

%ion. Recent experimental resu(ts0], although affected by
larger uncertainty, support a similar conclusion.
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FIG. 4. Relative dispersiofR?(t)) for N=20 octaves simula- FIG. 6. Longitudinal Lagrangian structure functioﬁ%)(R) for
tion averaged over fOrealizations. The line is the theoretical Ri- p=1,2,3, and 4(from top to bottonm for an intermittent velocity
chardson scaling?®. field of N=30 octaves. The average is oveP Jfarticle pairs. The

continuous lines represents the theoretical scaling with exponents

Lyapunov exponentwhich has been successfully applied in ¢, given in Table I.

the predictability probleni16] and in the diffusion problem

[17]. Given a set of threshold®,=2"R, within the inertial  statistics. This property will be used in Sec. VI to investigate
range, we compute the “doubling timeT(R,) defined as the scaling laws of relative dispersion in the presence of
the time it takes for the particle pair separation to grow fromgulerian intermittency.

a thresholdR, to the next oneR,,,. Averages are then

performed over many dispersion experiments, i.e., particle

pairs. The outstanding advantage of this kind of averaging at VI. EFFECT OF EULERIAN INTERMITTENCY

fixed scale separation, as opposite to a fixed time, is that it | . literature there h b f it s 1
removes crossover effects since all sampled particle pairs n ﬁre\;lous |Qbrla ure etr_e a;/eLeen very e\;v? t?mpts 0
belong to the inertial range. investigate possible corrections to Lagrangian statistics stem-

The scaling properties of the doubling time statistics ard"'Nd from Eulerian intermittenc}18-21. This is quite sur-

obtained by simple dimensional arguments. The time it take rising especially .if compa_lred W?th the enormous amount of
for the particle pair separation to grow froRito 2R can be Iterature concerning the intermittency corrections to Eule-

: . . N ) . rian statisticg3,22]. This mismatch is partly explained by
gmgﬂﬁggﬂlgse\fvtgﬁesdeﬁsc)t tt?ef i\é;ﬁ%’gfor the inverse the difficulty of having experimental checks for the proposed

theoretical corrections. The use of synthetic velocity fields

o provides a first benchmark which is extremely easy and less
1 ~<5V(R) >~R—2p/3_ (18) expensive than experiments and direct numerical simula-
TP(R) RP tions.

In Fig. 6 we report the Lagrangian structure functions
In Fig. 5 the great enhancement in the scaling range achievéﬁf})(r):<(5V(L)(r))p) computed recording the Lagrangian
by using “doubling times” is clearly evident. velocity difference whenever the particle pair separation
The conclusion that can be drawn from this simple ex-equalsr. The average is over many different particle pairs.
ample is that the doubling time statistics allow for betterThe values of, for the intermittent Eulerian synthetic ve-
estimations of the scaling exponents than the usual fixed timkecity field are reported in Table I. Observe the wide inertial
range, over more than ten decades, corresponding to an inte-
gral Reynolds number of Re10'2. As opposed the Eulerian
structure function, the first order Lagrangian structure func-
tion is nonzero, reflecting the average growth of particle pair

10000

1000 ¢ separation.
A The most interesting and nontrivial result is that scaling
c exponents for the Lagrangian structure functions have values
% 100 £ very close to those of the Euleriafy (Table ). In terms of
multifractal formalism3,23], this result is restated by saying
0 that the fractal dimensior@(h) for the Lagrangian and Eu-

lerian velocity statistics are the same.

With this result we can extend the dimensional arguments
leading to Richardson’s law to the intermittent case by using
the multifractal formalism. From the definition

1078 10°® 107 107 1072 0.1
R

FIG. 5. Average inverse doubling timd/T(R)) for the same
simulation as in Fig. 4. Observe the enhanced scaling region. The

— (RP\= p—154,,(L)
line is the theoretical Richardson scaliRg % [Eq. (18)]. dt<R )=p(RTZOVED, (19)
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and using the multifractal representation for the velocity dif- ' )
ferences, we can write P e, e,
d - 10 b .. "
—(RP)~ | dhRp~1+h+3-D(h), (20) & i Xk, .
dt o - <y
E p=3 x x
A +++++++*++++*++++++++Xx
The time needed for the particle pair separation to reach the %:" N -
scaleR is dominated by the largest time in the process, and Vv B p=1 .
can be dimensionally estimated asR/ vV ~R*™ " |ead- ' H e
ing to
0.1 . . .
d +2+h-D(h)]/(1-h 10° 10 10* !
a<RP>~f dh tlP (MI(1=h) (21) t

FIG. 7. Relative dispersiofRP(t)) rescaled with R%(t) )¢’ for
The integral is evaluated by saddle point method, and givep=1,3, and 4 ¢). The almost constant plateau indicates a relative
the final resulf RP) ~t“p, with the scaling exponents scaling in agreement with predictid@2). For comparison, we also
plot (R*t)) rescaled with the nonintermittent prediction
p+3— D(h)} (R%(1))2(x), clearly indicating a deviation from normal scaling.

1-h

ap= in h
~R/6v(R). Fluctuations of the velocity fields induce fluctua-
tions in the doubling time. Averaging over many realiza-

In the case of an intermittent Eulerian velocity field, the rela-,. .
tions, we can write

tive dispersion displays a nonlinear scaling expongntsee
Table ). However, there is an interesting result, already ob-

tained in Ref[18]. From the general multifractal formalism

it follows that 3—D(h)=1-3h, where the equality is sat-

isfied for the scaling exponerit; which realizes the third

order structure functiodz;=1. As a consequence it follows The doubling time statistics contains, therefore, the same in-
that @,=3, and the Richardson’s laR?)~t3 is not af-  formation as the relative dispersion expone(®8). Let us
fected by intermittency corrections, while the other momentgemark that in this case the exponent unaffected by Eulerian
in general are. We note that the argument presented hefgtermittency is{3;—3=—2.

leading to Eq.(22) is just one reasonable dimensional as- As reported in Fig. 8, our predictions are very well con-
sumption which can be justified ondyposterioriby numeri-  firmed by numerical simulations. The plot of the compen-
cal simulations or experimental data. However other assumpsated inverse time statistics clearly discriminates between the
tions are possibl¢18-20, leading, in general, to different multiaffine scaling[Eq. (23)] and the affine scalindEq.
predictions. (18)] (here reported only fop=4). Note also that the scal-

The scaling exponents,, satisfy the inequalitya,/p ing region for the inverse time statisti¢ixed scale statis-
<3/2 forp>2. This amounts to saying that, as time goes ontics) is wider than that of Fig. Tfixed time statistics so that
the right tail of the particle pair separation probability distri- the scaling exponent can be determined with higher accu-
bution function becomes less and less broad. In other wordsacy. In Table. | we report the theoretical expongqgt={,,
due to the Eulerian intermittency, particle pairs are more—p of Eq. (23) compared with the numerical values from
likely to stay close to each other than to experience a larggest fit. The agreement is within 2%.
separation.

In Fig. 7 we show the momen{&RP(t)) for differentp’s. 100
We find that(R?(t)) displays a cleat® scaling law. The .
scaling region reduces as the moment increases, making the X x x
determination of the exponents, rather difficult. To over- XX Xy

~f dhRP(—1DR3-D(h) _ RGP, (23
TP(R)

come this difficulty we plot the momentRP(t)) compen-
sated for by(R?(t))*»"3, which should result to be constant
according to Eq(22). For comparison we also plot the mo-
ment p=4 compensated for by normal scaling, i.e.,
(RA(t))~(R?(1))2. It is evident that predictiori22) is com-
patible with our numerical data, while the Richardson scaling
(4) is not. To be more quantitative, in Table | we report the
values ofa, obtained from a best fit dfR°(t)). The numeri-

cal values, although affected by the large uncertainty, are in
good agreement with the theoretical predictions.

<RP5/TP(R)>

-
o
T

1

10°

+

+

L+

+

p=

+ 0+t

p=

+ o+ o+

p=

+ o+ +

=1

+ 0+ o+

+

+

107

107 10° 0.1

R

The time doubling analysis discussed in Sec. V proves to FIG. 8. Inverse doubling time statisti¢$/TP(R)) compensated
be very useful in the case of Eulerian intermittency. To sedor by the multifractal predictio18) R%~P for p=1,2,3, and 4

how the scaling of the doubling times is affected we can usg+). Inverse doubling time¢1/T*(R)) compensated for by the

the dimensional estimate for the doubling timER)

nonintermittent predictiolR ~83(x).
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Fluctuating characteristic times " "

0.25 =1

It must be pointed out that the construction of the syn- I ?* +
thetic field proposed here shows an inconsistency with the 0o L.
expected statistical properties imposed by Navier-Stokes a
equations. Indeed, the characteristic turnover time of eddie: & 0451+ B f? R
of sizeRiis taken to be equal to(R)~R?3. However, since & - |* 1
dimensionally7(R) ~R/év(R), as long asdv(R) are fluc- j,g: 01l 3
tuating quantities the characteristic times must fluctuate as v ' s e e e e e e e e e =2, .
well. This effect is definitely enhanced in presence of inter- '
mittency, where the average characteristic times do not shov 0.05 r . p=
simple scalingd 11]. This finding could shed some doubt on P
the validity of the results obtained up to here. 010_6 164 16_2 ]

We thus turn to popular dynamical models of turbulence,
the so called shell mode]22]. These are deterministic mod-
els which display a dynamic energy cascade toward small FIG. 9. Inverse time statistidd/T?(R)) compensated for by the
scales. The model is built in terms of shell variablgs  multifractal predictionRér~P for the shell model simulation with
which represent the velocity differences in a wave numbeN=24 shells,»=10"8, and k,=0.05. The average is over 10
octave k,=ky2" in quasi-Lagrangian coordinates. With a realizations of particle pairs.
suitable choice of parameters, the model develops a chaotic
dynamics which is responsible for the intermittency correc
tion to the Kolmogorov scaling exponents remarkably clos

tso ;?eenf)(&eengeerl}tﬂg(?éiesilégzlizgIg iognﬂgtnﬁigeetgémﬂrsrffv é?roperties(structure functions thus allowing extensive in-
y ' plays dy y vestigations of the effects of intermittency on Lagrangian

times with the same statistics expected for Navier-Stokes tur- "> <. .
bulence[24]. pair dispersion.

The particular model we use is a recently oroposed shell For non intermittent Kolmogorov-like turbulence, we find
P ) y prop khat our simulations agree with the original Richardson ap-
model[25] for the complex variables,,,

proach based on a diffusion equation for relative separation.

R

ity difference field in quasi-Lagrangian coordinates. The syn-
Shetic flow is constructed with prescribed two-point scaling

du, 1 1 In the case of intermittent turbulence we have found that the
W:ikn un+2u;§+1—zun+1u:,l+ gun,lun,z relative dispersion displays gnomalous scali_ng_ exponents,
and can no longer be described as a self-similar process.

—vkuy+f,, (24)  Relative dispersion intermittency can be included by a natu-

ral extension of the multifractal formalism to Lagrangian
quantities. The predictions so obtained are in quite good
agreement with our numerical simulations.

To better analyze numerical data, we have suggested an
approach based on Lagrangian doubling times which leads to
wider scaling ranges than the usual fixed time statistics, and
thus it is very promising for data analysis. The present work
is a first step toward the clarification of the Lagrangian-
¥ulerian relationship in fully developed turbulence. It would
be extremely interesting to check our claims by mean of
direct numerical simulations or laboratory experiments.

wherev is the viscosity and,, is a forcing term restricted to
the first two shells.
The QL stream functiofl2) can be written in terms af,,

by taking ¢,,=Re(u,), ¢,,=Im(u,). The scaling expo-
nents for the Eulerian structure functiogs are computed
numerically and listed in Table I. In Fig. 9 we report the
statistics of Lagrangian doubling times compensated for b
the theoretical scaling23). Also in this case there is evi-
dence of anomalous scaling in agreement with the multifrac
tal prediction, confirming our previous findings with the sto-
chastic velocity field. This result indicates that the relative
dispersion statistics is not very sensitive to the details of the

time dependence of the Eulerian velocity fi¢&]7]. ACKNOWLEDGMENTS
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