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Pair dispersion in synthetic fully developed turbulence
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The Lagrangian statistics of relative dispersion in fully developed turbulence is numerically investigated. A
scaling range spanning many decades is achieved by generating a two-dimensional velocity field by means of
a stochastic process with prescribed statistics and of a dynamical model~shell model! with fluctuating char-
acteristic times. When the velocity field obeys Kolmogorov similarity, the Lagrangian statistics is self similar
and agrees with Richardson’s predictions@Proc. R. Soc. London Ser. A110, 709 ~1926!#. For intermittent
velocity fields the scaling laws for the Lagrangian statistics are found to depend on the Eulerian intermittency
in agreement with the multifractal description. As a consequence of the Kolmogorov law the Richardson law
for the variance of pair separation is, however, not affected by intermittency corrections. Moreover, Lagrangian
exponents do not depend on the particular Eulerian dynamics. A method of data analysis, based on fixed scale
statistics rather than usual fixed time statistics, is shown to give much wider scaling range, and should be
preferred for the analysis of experimental data.@S1063-651X~99!09112-6#

PACS number~s!: 47.27.Qb, 47.27.Gs, 47.27.Eq
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I. INTRODUCTION

Understanding the statistics of particle pair dispersion
turbulent velocity fields is of great interest for both theor
ical and practical implications. At variance with single pa
ticle dispersion, which depends mainly on large scale, ene
containing eddies, pair dispersion is driven~at least at inter-
mediate times! by velocity fluctuations at scales comparab
with the pair separation. These small scale fluctuations
thought to be independent of the details of the large sc
flow @1#. Since fully developed turbulence displays we
known, nontrivial universal features in the Eulerian statist
of velocity differences@2,3#, pair dispersion represents
starting point for the investigation of the general problem
the relationship between Eulerian and Lagrangian proper
Moreover, a deep comprehension of relative dispers
mechanisms is of fundamental importance from an appl
tive point of view, for a correct modelization of small sca
diffusion and mixing properties.

Since the pioneering work by Richardson@4#, many ef-
forts have been done to confirm his law experimentally@2# or
numerically@5–7#. Nevertheless, the main obstacle to a de
investigation of relative dispersion in turbulence remains
lack of sufficient statistics due to technical difficulties
laboratory experiments and to the moderate inertial ra
reached in direct numerical simulations.

In this paper we present a detailed investigation of
statistics of relative dispersion from extensive direct num
cal simulations of particle pairs advected by two-dimensio
synthetic turbulent velocity fields with prescribed Euleri
statistical features. First we consider the probability distrib
tion of Lagrangian quantities in a self similar Kolmogoro
like flow, and confirm the Richardson-Obukhov prediction
PRE 601063-651X/99/60~6!/6734~8!/$15.00
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We then investigate the effects of Eulerian intermittency
Lagrangian statistics. We find deviations of the scaling
ponents from Richardson’s values, i.e., ‘‘Lagrangian int
mittency.’’ These effects cannot be captured by dimensio
arguments alone. The simplest step beyond dimensio
analysis is the extension of the multifractal description s
cessfully used for Eulerian statistics to Lagrangian qua
ties. Our numerical simulations agree with the predictions
the Lagrangian multifractal description.

To see possible effects of fluctuating characteristic tim
on the Lagrangian statistics, we also consider a velocity fi
generated by a shell model of turbulence. We find that re
tive dispersion scaling laws are not sensitive to the detail
the Eulerian dynamics.

The intermittency corrections to relative dispersion a
however small. Moreover, they can be hidden by the fin
scaling range. Huge Reynolds numbers are necessary in
der to clearly resolve the scaling exponents. To partia
overcome these difficulties, we propose a methodology
the analysis of relative dispersion data based on Lagran
statistics at fixed spatial particle separation. In particular,
statistics of ‘‘doubling times’’ — the time that two particle
spend to double their separation — seems a very promi
tool in data analysis.

In Sec. II we address the problem of relative dispersion
fully developed, homogeneous, and isotropic turbulence
Sec. III we propose a method to construct intermittent Eu
rian velocity fields with prescribed intermittent properties.
Sec. IV results on the Lagrangian statistics of particle pa
advected by a nonintermittent Kolmogorov-like veloci
field are presented. In Sec. V the method of doubling time
introduced, and its advantages over the usual fixed time
tistics are discussed. In Sec. VI we consider intermittent
6734 © 1999 The American Physical Society
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PRE 60 6735PAIR DISPERSION IN SYNTHETIC FULLY . . .
lerian velocity fields. The effects on the Lagrangian statis
are discussed in a multifractal framework and compared w
numerical data. In Sec. VII conclusions are drawn.

II. RICHARDSON LAW

We consider the dispersion of pairs of particles passiv
advected by an homogeneous, isotropic, fully developed
bulent field. Due to the incompressibility of the velocity fie
the particles will, on average, separate one from ano
@8,9#. The statistics of particle pair separation is convenien
summarized by the probability density functionp(R,t) of the
distance between pairs of particles at a given time, called
distance neighbor functionby Richardson@4#.

In view of the diffusive effect exerted by the turbule
motion on the advected particles, Richardson argued tha
time evolution of the distance neighbor function could
described by a proper diffusion equation

]p~R,t !

]t
5

]

]Rj
S K~R!

]p~R,t !

]Rj
D , ~1!

with anR dependent scalar turbulent diffusivityK(R). From
a collection of experimental data, Richardson was able
obtain his celebrated ‘‘4/3’’ law

K~R!5aR4/3, ~2!

wherea is a constant. This choice for the diffusivity relie
mainly on empirical grounds: dependence of the verti
eddy diffusivity in the atmosphere with the altitude.

In three dimensions the solution of Eq.~1! is

p~R,t !5N~at !29/2expS 2
9R2/3

4at D , ~3!

whereN is a normalization factor, which immediately lead
to the growth laws for the moments of particle separation

^R2n~ t !&5E dRR2np~R,t !;t3n. ~4!

Scaling ~4! can also be derived by a simple dimension
argument due to Obukhov@2#, which uses the Kolmogorov
similarity law for the Eulerian velocity increments over
distanceR in fully developed turbulence:

^udv (E)~R!u&5^uv~x1R!2v~x!u&;R1/3, ~5!

with R5uRu, and the particle pair separation equation

dR

dt
5dv (L)~R!, ~6!

where dv (L) represents the velocity difference evaluat
along the Lagrangian trajectory. Assuming thatdv (L)(R) has
the same scaling exponent ofudv (E)(R)u, from Eqs.~5! and
~6! one obtainsdR2/dt;Rdv (L)(R);R4/3 and hence the Ri-
chardson’s laŵ R2&;t3 @cf. Eq. ~4!#. The assumption tha
the Lagrangian velocity difference has the same Kolmogo
scaling as the Eulerian one relies on the intuitive idea that
main contribution to the separation rate follows from edd
with a size comparable to the separation itself.
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We remark that prediction~4!, being based on dimen
sional grounds, can be obtained starting from different
sumptions. On the other hand, the Richardson form@Eq. ~3!#
for the distance neighbor function depends on the detail
the argument, and in particular on the validity of position~2!.
This is not the only possible form compatible with th
known experimental data; indeed, in 1952, Batchelor p
posed an alternative approach to the problem which led
different ~Gaussian! p(R,t) @1#. As far as we know there is
still no clear evidence supporting one or another form of
distance neighbor function of particle pairs. The most rec
experimental results@10# support non-Gaussian tails close
the Richardson proposal.

At this point two remarks are in order. First, the determ
nation of the specific functional dependencies — such as
shape of the distance-neighbor functionp(R,t) — lies be-
yond the possibilities of similarity hypotheses, and thus ca
for additional hypotheses, like Eqs.~1! and~2!. Second, dif-
fusive approximations cannot describe intermittency effe
on Lagrangian statistics. We thus have to deal with supp
mentary hypotheses which have a considerable degree o
bitrariness, and whose content can be mainly judgeda pos-
teriori. In this respect the use of synthetic velocity fiel
represents a flexible framework for a detailed analysis of p
dispersion statistics.

III. SYNTHETIC TURBULENT FIELD

The generation of a synthetic turbulent field which rep
duces the relevant statistical features of fully developed
bulence is not an easy task. To obtain a physically sens
evolution for the velocity field, the fact that each eddy
subject to the action of all other eddies must be consiste
included. Actually the overall effect amounts to only tw
main contributions: the sweeping exerted by larger edd
and the shearing due to eddies of comparable size. This
substantial simplification; nevertheless the problem of pr
erly mimicking the sweeping effects is still unsolved. It
relatively easy to construct a spatial, time independent,
affine, or multiaffine velocity field in any dimension. Then
let the particle separate some time evolution, at least in
dimensions, has to be introduced. The time evolution of
velocity field should be consistent with the field itself, i.e
the eddies should move with the local velocity itself. This
the essence of the sweeping problem which has been
dressed in different ways in previous works@6,7#.

In the study of particle pairs dispersion, and only in th
case, we can overcome the sweeping problem by us
quasi-Lagrangian~QL! coordinates@11#, i.e., a reference
frame attached to a fluid particler1(t). This choice bypasse
the problem of sweeping, since relative velocities are un
fected by large scale advection, making the generation
realistic synthetic velocity fields simpler. The price to pay
that only the problem of two-particle dispersion can be w
managed within this framework. The properties of sing
particle Lagrangian statistics, for example, cannot be con
tently treated. Thus our method cannot deal with nonhom
geneous situations where the velocity statistics depend on
position of the reference particle.

In the QL reference the first particle sits at the origin a
is, by definition, at rest. The second particle is placed
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distance~separation! R and is advected by the QL velocity

v (QL)~R,t !5v„r1~ t !1R,t…2v„r1~ t !,t… ~7!

wherev is the Eulerian velocity field andr1(t) the trajectory
in the original reference frame of the particle placed at
origin of the QL reference:

d

dt
r1~ t !5v„r1~ t !,t…. ~8!

By this change of coordinates the problem of pair disp
sion in a Eulerian velocity fieldv is reduced to the problem
of single particle dispersion in the QL velocity fiel
v (QL)(r,t). It is easy to show that whenever one consid
homogeneous flows@11#, the QL velocity differences have
the same one-time statistical properties of the Eulerian o
Indeed, one has

dv (QL)~l ,t;r![v (QL)~r1l ,t !2v (QL)~r,t !

5v„r1~ t !1r1l ,t…2v„r1~ t !1r,t…

[dv (E)
„l ,t;r1~ t !1r…. ~9!

Thus, assuming homogeneity and averaging over the
erence trajectory, for the structure functions one finds

^„dv (QL)
„l ,t !…p&;^„dv (E)

„l ,t !…p&;l zp, ~10!

where the exponentzp is a convex function ofp, and z3
51.

When generating a synthetic velocity field for the partic
pair dispersion we can fulfill a weaker condition requirin
scaling~10! to be satisfiedonly along the line joining the two
particles, since only moments ofv (QL) along this direction
enter into the dynamics. This is a further substantial sim
fication: it is sufficient to build a QL velocity field with the
proper scaling in the radial direction only. Needless to s
for three-particles dispersion a field with proper scaling in
directions must already be constructed. In the following
will consider only QL velocity fields, and the superscript w
be omitted.

We consider only the two-dimensional case, where
can introduce a stream function for the QL velocity:

v~r,t !5“3c~r,t !. ~11!

The extension to three-dimensional velocity fields does
present technical difficulties, but it is only more expensive
terms of numerical resources. Under isotropic conditions,
stream function can be decomposed in radial octaves as

c~r,u,t !5(
i 51

N

(
j 51

n
f i , j~ t !

ki
F~kir !Gi , j~u!, r 5uru,

~12!

whereki52i . Following a heuristic argument, one expec
that for a givenr sum ~12! is essentially dominated by th
term with i such thatr;22 i . This locality of contributions
suggests a simple choice for the functional dependencie
the ‘‘basis functions’’:

F~x!5x2~12x! for 0<x<1, ~13!
e
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and zero otherwise. Moreover we take

Gi ,1~u!51, Gi ,2~u!5cos~2u1w i !, ~14!

and Gi , j50 for j .2 , with w i quenched random phase
This choice is rather general because it can be derived f
the lowest order expansion for smallr of a generic stream-
function in QL coordinates.

Under the usual locality conditions for infrared conve
gence,zp,p @12#, the leading contribution to thepth order
structure function follows from the term in sum~12! with r
.22M, and is given bŷ ufM ,2up&. Thus if f i , j (t) are sto-
chastic processes with characteristic timest i;222i /3, to en-
sure the correct turnover time, zero mean and^uf i , j up&
;ki

2zp , scaling~10! will be accomplished.
An efficient way of to generatef i , j is @13#

f i , j~ t !5gi , j~ t !z1,j~ t !z2,j~ t !•••zi , j~ t !, ~15!

wherezi , j are independent, positive definite, identically d
tributed random processes with a characteristic timet i
5222i /3, while gi , j are independent random processes w
zero mean,̂ gi , j

2 &;ki
22/3, and characteristic timet i .

The scaling exponentszp are determined by the probabi
ity distribution of zi , j via

zp5
p

3
2 ln 2^z

p&. ~16!

The Kolmogorov scalingzp5p/3 is recovered by fixingzi , j
51. In the following we shall report results for both syn
thetic turbulent velocity fields with Kolmogorov scalingzp
5p/3, and fields whose intermittency corrections to the K
mogorov scaling are close to the experimental values
three dimensional turbulence@14#; see Table I.

IV. LAGRANGIAN STATISTICS IN THE ABSENCE OF
EULERIAN INTERMITTENCY

When the advecting velocity field has Kolmogorov sc
ing zp5p/3, one expects Richardson’s law^R2&;t3 to hold.
This is indeed very well verified in our numerical simul

TABLE I. Theoretical and numerical fitted scaling exponent f
simulations with an intermittent velocity field. The number of she
is N530, corresponding to an integral Reynolds number
.1010. zp : Eulerian structure functions theoretical scaling exp
nents.zp

num: Lagrangian structure function numerical scaling exp
nents.ap : theoretical relative dispersion scaling exponents.ap

num:
numerical relative dispersion scaling exponents.zp2p: theoretical
doubling time scaling exponents.bp

num: numerical doubling time
scaling exponents.zp

SM : Eulerian scaling exponents for the she
model.

p zp zp
num ap ap

num zp2p bp
num zp

SM

1 0.390 0.39 1.59 1.56 20.610 20.62 0.39
2 0.719 0.74 3.00 2.94 21.281 21.28 0.73
3 1.0 1.04 4.32 4.27 22.0 21.99 1.01
4 1.245 1.30 5.58 5.58 22.755 22.73 1.26
5 1.461 1.54 6.80 6.88 23.539 23.49 1.49
6 1.655 1.74 7.99 8.17 24.345 24.23 1.71
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tions over a wide range of scales, as shown in Fig. 1. T
Reynolds number for the synthetic Eulerian velocity fie
can be defined as Re5(kN /k1)4/3, so that for this simulation
with N530 we have Re.1012.

From similarity arguments the distance neighbor funct
p(R,t) in two dimensions should assume the self simi
isotropic form

p~R,t !5t23F~R/t3/2!, ~17!

whereF(j) is a universal function whose shape cannot
predicted from similarity hypotheses. We checked the va
ity of Eq. ~17! by rescaling the numerical distance neighb
functions with the theoretical average separation^R&;t3/2.
The different curves collapse onto a unique curveF(R/t3/2);
see Fig. 2. The collapse indicates that the process is ind
self similar in time. The continuous line in this figure is th
Richardson predictionF(j)}exp(2bj2/3), @cf. Eq. ~3!#, and
is in good agreement with the numerical data. The dista
neighbor functions obtained in our simulations clearly de
ates from the Gaussian proposal of Batchelor@1# ~see Fig. 2!,
and give strong support to the original Richardson pred

FIG. 1. Average variance of pair separation^R2(t)& for simula-
tion with N530 octaves averaged over 104 realizations. The con-
tinuous line represents the Richardson scalingt3.

FIG. 2. Rescaled probability distribution functions of sepa
tions as function ofR/t3/2 for the simulation of Fig. 1 andt
51023(*), t51022(3), and t50.25(1). The continuous line
represents the Richardson distribution~3!, and the dashed line is th
Gaussian distribution.
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tion. Recent experimental results@10#, although affected by
larger uncertainty, support a similar conclusion.

Another interesting statistical quantity which can be
vestigated is the probability distribution functionpL(dvut) of
Lagrangian velocity differencesdv evaluated along the tra
jectory. Dimensional arguments lead to^dv2&;t, showing
the accelerating nature of Richardson dispersion@2#. In Fig.
3 we plot the computedpL(dvut) as function ofdv/t1/2. The
collapse of curves for different timest demonstrates the va
lidity of the scaling assumption.

V. DOUBLING TIME STATISTICS

A closer look at Fig. 1 shows that the power-law scali
regime^R2(t)&;t3 is observed only well inside the inertia
range: the scaling range for relative dispersion is redu
with respect to the Eulerian inertial range. To understand
effect consider a series of particle pair dispersion exp
ments, in which a couple of particles is released at timt
50 with initial separationR0. At a fixed timet1, as is usu-
ally done, we perform an average over all different expe
ments and computêR2(t1)&. It is clear that, unlesst1 is
large enough that all particle pairs have ‘‘forgotten’’ the
initial conditions, our average will be biased. This is at t
origin of the flattening of̂ R2(t)& for small times, which we
can call a crossover from an initial condition dominated
gime to a self similar regime. A similar effect is observed f
times of the order of the integral time scale, since so
particle pairs might have reached a separation larger than
integral scale and thus diffused normally, biasing the av
age, so that the curvêR2(t)& flattened again. This effect is
particularly evident for low Reynolds numbers, as shown
Fig. 4 for a simulation with Re.108. This correction to a
pure power law is far from being negligible, especially
experimental and direct numerical simulation data where
inertial range is generally limited by low Reynolds numbe
and/or experimental apparatus. For example, Refs.@7,15#
show quite clearly the difficulties that may arise in numeric
simulations with the standard approach.

To overcome this difficulty we propose an alternative a
proach based on statistics at a fixed spatial scale. The me
is in the spirit of a recently introduced generalization of t
Lyapunov exponent to finite size perturbation~finite size

-

FIG. 3. Rescaled probability distribution functions of Lagran
ian velocity differences~rescaled witht1/2) for the same values oft
as in Fig. 2.
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Lyapunov exponent! which has been successfully applied
the predictability problem@16# and in the diffusion problem
@17#. Given a set of thresholdsRn52nR0 within the inertial
range, we compute the ‘‘doubling time’’T(Rn) defined as
the time it takes for the particle pair separation to grow fro
a thresholdRn to the next oneRn11. Averages are then
performed over many dispersion experiments, i.e., part
pairs. The outstanding advantage of this kind of averagin
fixed scale separation, as opposite to a fixed time, is th
removes crossover effects since all sampled particle p
belong to the inertial range.

The scaling properties of the doubling time statistics
obtained by simple dimensional arguments. The time it ta
for the particle pair separation to grow fromR to 2R can be
dimensionally estimated asT(R);R/dv(R); for the inverse
doubling times we thus expect the scaling

K 1

Tp~R!
L ;

^dv~R!p&

Rp
;R22p/3. ~18!

In Fig. 5 the great enhancement in the scaling range achie
by using ‘‘doubling times’’ is clearly evident.

The conclusion that can be drawn from this simple e
ample is that the doubling time statistics allow for bet
estimations of the scaling exponents than the usual fixed

FIG. 4. Relative dispersion̂R2(t)& for N520 octaves simula-
tion averaged over 104 realizations. The line is the theoretical R
chardson scalingt3.

FIG. 5. Average inverse doubling timê1/T(R)& for the same
simulation as in Fig. 4. Observe the enhanced scaling region.
line is the theoretical Richardson scalingR22/3 @Eq. ~18!#.
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statistics. This property will be used in Sec. VI to investiga
the scaling laws of relative dispersion in the presence
Eulerian intermittency.

VI. EFFECT OF EULERIAN INTERMITTENCY

In previous literature there have been very few attempt
investigate possible corrections to Lagrangian statistics st
ming from Eulerian intermittency@18–21#. This is quite sur-
prising especially if compared with the enormous amount
literature concerning the intermittency corrections to Eu
rian statistics@3,22#. This mismatch is partly explained b
the difficulty of having experimental checks for the propos
theoretical corrections. The use of synthetic velocity fie
provides a first benchmark which is extremely easy and
expensive than experiments and direct numerical sim
tions.

In Fig. 6 we report the Lagrangian structure functio
Sp

(L)(r )5^„dv (L)(r )…p& computed recording the Lagrangia
velocity difference whenever the particle pair separat
equalsr. The average is over many different particle pai
The values ofzp for the intermittent Eulerian synthetic ve
locity field are reported in Table I. Observe the wide inert
range, over more than ten decades, corresponding to an
gral Reynolds number of Re.1012. As opposed the Eulerian
structure function, the first order Lagrangian structure fu
tion is nonzero, reflecting the average growth of particle p
separation.

The most interesting and nontrivial result is that scali
exponents for the Lagrangian structure functions have va
very close to those of the Eulerianzp ~Table I!. In terms of
multifractal formalism@3,23#, this result is restated by sayin
that the fractal dimensionsD(h) for the Lagrangian and Eu
lerian velocity statistics are the same.

With this result we can extend the dimensional argume
leading to Richardson’s law to the intermittent case by us
the multifractal formalism. From the definition

d

dt
^Rp&5p^Rp21dv (L)&, ~19!he

FIG. 6. Longitudinal Lagrangian structure functionsSp
(L)(R) for

p51,2,3, and 4~from top to bottom! for an intermittent velocity
field of N530 octaves. The average is over 105 particle pairs. The
continuous lines represents the theoretical scaling with expon
zp given in Table I.
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and using the multifractal representation for the velocity d
ferences, we can write

d

dt
^Rp&;E dhRp211h132D(h). ~20!

The time needed for the particle pair separation to reach
scaleR is dominated by the largest time in the process, a
can be dimensionally estimated ast;R/dv (L);R12h, lead-
ing to

d

dt
^Rp&;E dh t[ p121h2D(h)]/(12h). ~21!

The integral is evaluated by saddle point method, and g
the final result̂ Rp&;tap, with the scaling exponents

ap5 infhFp132D~h!

12h G . ~22!

In the case of an intermittent Eulerian velocity field, the re
tive dispersion displays a nonlinear scaling exponentap ~see
Table I!. However, there is an interesting result, already o
tained in Ref.@18#. From the general multifractal formalism
it follows that 32D(h)>123h, where the equality is sat
isfied for the scaling exponenth3 which realizes the third
order structure functionz351. As a consequence it follow
that a253, and the Richardson’s laŵR2&;t3 is not af-
fected by intermittency corrections, while the other mome
in general are. We note that the argument presented
leading to Eq.~22! is just one reasonable dimensional a
sumption which can be justified onlya posterioriby numeri-
cal simulations or experimental data. However other assu
tions are possible@18–20#, leading, in general, to differen
predictions.

The scaling exponentsap satisfy the inequalityap /p
,3/2 for p.2. This amounts to saying that, as time goes
the right tail of the particle pair separation probability dist
bution function becomes less and less broad. In other wo
due to the Eulerian intermittency, particle pairs are m
likely to stay close to each other than to experience a la
separation.

In Fig. 7 we show the moments^Rp(t)& for different p’s.
We find that ^R2(t)& displays a cleart3 scaling law. The
scaling region reduces as the moment increases, making
determination of the exponentsap rather difficult. To over-
come this difficulty we plot the momentŝRp(t)& compen-
sated for bŷ R2(t)&ap/3, which should result to be constan
according to Eq.~22!. For comparison we also plot the mo
ment p54 compensated for by normal scaling, i.e
^R4(t)&;^R2(t)&2. It is evident that prediction~22! is com-
patible with our numerical data, while the Richardson scal
~4! is not. To be more quantitative, in Table I we report t
values ofap obtained from a best fit of̂Rp(t)&. The numeri-
cal values, although affected by the large uncertainty, ar
good agreement with the theoretical predictions.

The time doubling analysis discussed in Sec. V prove
be very useful in the case of Eulerian intermittency. To s
how the scaling of the doubling times is affected we can
the dimensional estimate for the doubling timeT(R)
-

e
d
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-

-
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-

p-

,

s,
e
e
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g
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to
e
e

;R/dv(R). Fluctuations of the velocity fields induce fluctua
tions in the doubling time. Averaging over many realiz
tions, we can write

K 1

Tp~R!
L ;E dhRp(h21)R32D(h);Rzp2p. ~23!

The doubling time statistics contains, therefore, the same
formation as the relative dispersion exponents~22!. Let us
remark that in this case the exponent unaffected by Eule
intermittency isz323522.

As reported in Fig. 8, our predictions are very well co
firmed by numerical simulations. The plot of the compe
sated inverse time statistics clearly discriminates between
multiaffine scaling@Eq. ~23!# and the affine scaling@Eq.
~18!# ~here reported only forp54). Note also that the scal
ing region for the inverse time statistics~fixed scale statis-
tics! is wider than that of Fig. 7~fixed time statistics!, so that
the scaling exponent can be determined with higher ac
racy. In Table. I we report the theoretical exponentbp5zp
2p of Eq. ~23! compared with the numerical values fro
best fit. The agreement is within 2%.

FIG. 7. Relative dispersion̂Rp(t)& rescaled witĥ R2(t)&ap/3 for
p51,3, and 4 (1). The almost constant plateau indicates a relat
scaling in agreement with prediction~22!. For comparison, we also
plot ^R4(t)& rescaled with the nonintermittent predictio
^R2(t)&2(3), clearly indicating a deviation from normal scaling.

FIG. 8. Inverse doubling time statistics^1/Tp(R)& compensated
for by the multifractal prediction~18! Rzp2p for p51,2,3, and 4
(1). Inverse doubling timeŝ1/T4(R)& compensated for by the
nonintermittent predictionR28/3(3).
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Fluctuating characteristic times

It must be pointed out that the construction of the sy
thetic field proposed here shows an inconsistency with
expected statistical properties imposed by Navier-Sto
equations. Indeed, the characteristic turnover time of ed
of sizeR is taken to be equal tot(R);R2/3. However, since
dimensionallyt(R);R/dv(R), as long asdv(R) are fluc-
tuating quantities the characteristic times must fluctuate
well. This effect is definitely enhanced in presence of int
mittency, where the average characteristic times do not s
simple scaling@11#. This finding could shed some doubt o
the validity of the results obtained up to here.

We thus turn to popular dynamical models of turbulen
the so called shell models@22#. These are deterministic mod
els which display a dynamic energy cascade toward sm
scales. The model is built in terms of shell variablesun
which represent the velocity differences in a wave num
octave kn5k02n in quasi-Lagrangian coordinates. With
suitable choice of parameters, the model develops a cha
dynamics which is responsible for the intermittency corr
tion to the Kolmogorov scaling exponents remarkably clo
to the experimental data@22#. Being a complete deterministi
system, the shell model also displays dynamic eddy turno
times with the same statistics expected for Navier-Stokes
bulence@24#.

The particular model we use is a recently proposed s
model @25# for the complex variablesun ,

dun

dt
5 iknS un12un11* 2

1

4
un11un21* 1

1

8
un21un22D

2nkn
2un1 f n , ~24!

wheren is the viscosity andf n is a forcing term restricted to
the first two shells.

The QL stream function~12! can be written in terms ofun
by taking fn,15Re(un), fn,25Im(un). The scaling expo-
nents for the Eulerian structure functionszp are computed
numerically and listed in Table I. In Fig. 9 we report th
statistics of Lagrangian doubling times compensated for
the theoretical scaling~23!. Also in this case there is evi
dence of anomalous scaling in agreement with the multifr
tal prediction, confirming our previous findings with the st
chastic velocity field. This result indicates that the relat
dispersion statistics is not very sensitive to the details of
time dependence of the Eulerian velocity field@6,7#.

VII. CONCLUSIONS

In this paper we have proposed a simple and effici
method for generating a time dependent, turbulentlike ve
-

-
e
s

es

s
-
w

,

ll

r

tic
-
e

er
r-

ll

y

-

e

t
c-

ity difference field in quasi-Lagrangian coordinates. The s
thetic flow is constructed with prescribed two-point scali
properties~structure functions!, thus allowing extensive in-
vestigations of the effects of intermittency on Lagrangi
pair dispersion.

For non intermittent Kolmogorov-like turbulence, we fin
that our simulations agree with the original Richardson
proach based on a diffusion equation for relative separat
In the case of intermittent turbulence we have found that
relative dispersion displays anomalous scaling expone
and can no longer be described as a self-similar proc
Relative dispersion intermittency can be included by a na
ral extension of the multifractal formalism to Lagrangia
quantities. The predictions so obtained are in quite go
agreement with our numerical simulations.

To better analyze numerical data, we have suggested
approach based on Lagrangian doubling times which lead
wider scaling ranges than the usual fixed time statistics,
thus it is very promising for data analysis. The present w
is a first step toward the clarification of the Lagrangia
Eulerian relationship in fully developed turbulence. It wou
be extremely interesting to check our claims by mean
direct numerical simulations or laboratory experiments.

ACKNOWLEDGMENTS

We thank L. Biferale for useful discussions. This wo
was partially supported by the INFM~Progetto di Ricerca
Avanzata TURBO! and by the European network ‘‘Intermit
tency in Turbulent Systems’’ under Contract No. FMRX
CT98-0175.

FIG. 9. Inverse time statisticŝ1/Tp(R)& compensated for by the
multifractal predictionRzp2p for the shell model simulation with
N524 shells,n51028, and k050.05. The average is over 104
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