J/ψ → µµ sidebands subtraction

Stefano Recanatesi

Cern Summer Student

23 August 2010

CMG group meeting
The $J/\psi \rightarrow \mu\mu$

The J/ψ

mass = 3096.916 ± 0.011 MeV/c2
declaw width = 93.2 ± 2.1 keV
decay modes:

- hadrons (87.7 ± 0.5)%
- $\mu^+\mu^-$ (5.94 ± 0.06)%
- e^+e^- (5.94 ± 0.06)%

production modes:

- non prompt $B \rightarrow J/\psi + X$
- prompt
 - direct
 - $X_c \rightarrow J/\psi \gamma, \ldots$
 - $\psi_{2s} \rightarrow J/\psi \pi\pi, \ldots$
Goal of the sidebands subtraction

Aims

- measurement of J/ψ cross section [CMS PAS BPH-10-002]
 → prompt-nonprompt, polarization, X_c contribution,..
- measurement of momentum scale and resolution (on single track) from fit to $J/\psi \rightarrow \mu\mu$ line shape
 → (Musclefit) calibration
Goal of the sidebands subtraction

Aims

• measurement of J/ψ cross section [CMS PAS BPH-10-002]
 \rightarrow prompt-nonprompt, polarization, X_c contribution,..

• measurement of momentum scale and resolution (on single track) from fit to $J/\psi \rightarrow \mu\mu$ line shape
 \rightarrow (Musclefit) calibration

We need to

• understand J/ψ kinematicks

• control the background

• compare data-MC
Goal of the sidebands subtraction

Aims

- measurement of J/ψ cross section [CMS PAS BPH-10-002]
 \rightarrow prompt-nonprompt, polarization, X_c contribution,..
- measurement of momentum scale and resolution (on single track) from fit to $J/\psi \rightarrow \mu\mu$ line shape
 \rightarrow (Musclefit) calibration

We need to

- understand J/ψ kinematicicks
- control the background
- compare data-MC

Sidebands subtraction of kinematic distributions
The goal

The method studies the distribution of the J/ψ kinematic variables.
The goal

The method studies the distribution of the J/ψ kinematic variables.

data: invariant mass $\mu^+ \mu^- \rightarrow J/\psi$
The Assumption on the sidebands
A method to investigate kinematic variable distributions: the goal

The goal
The method studies the distribution of the J/ψ kinematic variables.

data: invariant mass $\mu^+ \mu^- \rightarrow J/\psi$
The goal
The method studies the distribution of the J/ψ kinematic variables.

Assumption
The background events in peak mass region are extremely similar to the events in the areas close to the peak.

The Assumption on the sidebands
A method to investigate kinematic variable distributions: the goal

$J/\psi \rightarrow \mu\mu$
sidebands subtraction

Why this analysis?
Explaining the method
Applying the method
Technical details
Conclusion

The background events in peak mass region are extremely similar to the events in the areas close to the peak.

data: invariant mass $\mu^+\mu^- \rightarrow J/\psi$
The Assumption on the sidebands
A method to investigate kinematic variable distributions: the goal

The goal
The method studies the distribution of the J/ψ kinematic variables.

Assumption
The background events in peak mass region are extremely similar to the events in the areas close to the peak.
The Assumption on the sidebands
A method to investigate kinematic variable distributions: the goal

The goal
The method studies the distribution of the J/ψ kinematic variables.

Assumption
The background events in peak mass region are extremely similar to the events in the areas close to the peak.

data: invariant mass $\mu^+\mu^- \rightarrow J/\psi$

data: fit sideband and bkg estimation

The Assumption on the sidebands
A method to investigate kinematic variable distributions: the goal
The subtraction

\[
J/\psi \rightarrow \mu \mu \text{ sidebands subtraction}
\]

5

Stefano Recanatesi

Introduction
Why this analysis?
Explaining the method

Applying the method
Technical details
Pt analysis
\(\Delta \eta\) and \(\Delta \phi\) study

Conclusion
The subtraction

\[J/\psi \to \mu\mu \text{ sidebands subtraction} \]

5

Stefano Recanatesi

Introduction
Why this analysis?
Explaining the method
Applying the method
Technical details
Pt analysis
\(\Delta \eta \) and \(\Delta \phi \) study
Conclusion

\[
\begin{array}{c|c|c}
\text{M}_{J\psi} & \text{Entries} & \text{Mean} \\
\hline
 & 28802 & 3.094 \\
\hline
 & & 0.04517
\end{array}
\]
The subtraction

\[J/\psi \rightarrow \mu \mu \text{ sidebands subtraction} \]

5

Stefano Recanatesi

Introduction

Why this analysis?

Explaining the method

Applying the method

Technical details

Pt analysis

\(\Delta \eta \) and \(\Delta \phi \) study

Conclusion

\[\left(\begin{array}{c}
- \\
+ \\
\end{array} \right) \cdot \left| \frac{C}{A + B} \right| \]
Technical details

Standard selections:

- **Central skim for Onia:**

 \[M(\mu\mu) > 2 \text{ GeV} \]

- **PATUPLE:** official quarkonia

- **Analysis cuts:** muons couple in this order GG GT TT.

T selection:

- `iTrack->found() > 11;`
- `iTrack->chi2()/iTrack->ndof() < 4.0;`
- `p.pixelLayersWithMeasurement() \geq 1;`
- `fabs(iTrack->dxy()) < 3.0;`
- `fabs(iTrack->dz()) < 15.0;`
- `Muon->muonID("TrackerMuonArbitrated");`
- `Muon->muonID("TMLastStationAngTight");`

G selection:

- `gTrack->chi2()/gTrack->ndof() < 20.0;`
- `q.numberOfValidMuonHits() > 0;`
Technical details

Data

DATA: 226.5 nb$^{-1}$ with good runs, lumisection selection from official JSON file.

MC

- (only prompt) 75nb$^{-1}$
 /JPsiToMuMu 2MuPEtaFilter
 7TeV-pythia6-evtgen/Spring10-START3X V26-v1
- (non prompt) 122 nb$^{-1}$
 /ppMuX/Spring10-START3X_V26_S09-v1
 \rightarrow WORK ON GOING.
P_t analysis

Pt distribution for J/ψ peak and sidebands
P_t analysis

$J/\psi \rightarrow \mu\mu$ sidebands subtraction

7
Stefano Recanatesi

Introduction
Why this analysis?
Explaining the method

Applying the method
Technical details
P_t analysis
$\Delta \eta$ and $\Delta \phi$ study

Conclusion

Pt distribution for J/ψ peak and sidebands

P_t, spectrum shape driven by acceptance in η
P_t analysis

Pt sidebands subtraction

Stefano Recanatesi

Introduction
Why this analysis?
Explaining the method
Applying the method
Technical details
Pt analysis
$\Delta \eta$ and $\Delta \phi$ study

Conclusion
P_t analysis

Pt confront

- **the Data P_t spectrum is softer**

Pt sidebands subtraction

Introduction
- Why this analysis?
- Explaining the method

Applying the method
- Technical details
 - Pt analysis
 - $\Delta \eta$ and $\Delta \phi$ study

Conclusion
Why this analysis?
Explaining the method
Applying the method
Technical details
Pt analisys
$\Delta \eta$ and $\Delta \phi$ study
Conclusion

Data-MC differences

Cuts on MC

- $|\vec{p}_\mu| > 2.5$ GeV;
- $|\eta_\mu| < 2.5$

Trigger

Most efficient trigger HLT_L1 MuOpen is not in simulation.
For commissioning studies normalization is not relevant → maximize statistics.
Muons Variables

Introduction

Why this analysis?

Explaining the method

Applying the method

Technical details

Pt analysis

η and ϕ study

Conclusion

$J/\psi \rightarrow \mu\mu$ sidebands subtraction

Stefano Recanatesi

Muons Variables

Muons η

- **Purpose**: Study of η distribution in muons
- **Histogram**: Distribution of η values
- **Statistics**:
 - Entries: 542620
 - Mean: 0.01284
 - RMS: 1.896

Muons P_t

- **Purpose**: Study of P_t distribution in muons
- **Histogram**: Distribution of P_t values
- **Statistics**:
 - Entries: 542620
 - Mean: 2.043
 - RMS: 1.335
Acceptance of the detector

Introduction
Why this analysis?
Explaining the method
Applying the method
Technical details
Pt analysis
$\Delta \eta$ and $\Delta \phi$ study
Conclusion
Acceptance of the detector

Introduction
Why this analysis?
Explaining the method
Applying the method
Technical details
Pt analysis
$\Delta \eta$ and $\Delta \phi$ study
Conclusion
Studying $\Delta \eta$ between the two muons

$\Delta \eta$ vs P_t

data: $\Delta \eta$ vs P_t
Studying $\Delta \eta$ between the two muons $\Delta \eta$ vs M

data: $\Delta \eta$ vs M J/ψ
Studying $\Delta \eta$ between the two muons

Introduction

Why this analysis?

Explaining the method

Applying the method

Technical details

$\Delta \eta$ and $\Delta \phi$ study

Conclusion

Studying $\Delta \eta$ between the two muons

Data: $\Delta \eta : J/\psi$ and sidebands
Studying $\Delta \eta$ between the two muons

data: $\Delta \eta$ sidebands subtraction
Studying $\Delta \eta$ between the two muons

data: $\Delta \eta$ vs P_t sidebands subtraction
Studying $\Delta \phi$ between the two muons

$\Delta \phi$ vs P_t

data: $\Delta \phi$ vs P_t
Studying $\Delta \phi$ between the two muons

$\Delta \phi$ vs M

data: $\Delta \phi$ vs M J/ψ
Studying $\Delta \phi$ between the two muons

data: $\Delta \phi J/\psi$ and sidebands
Studying $\Delta \phi$ between the two muons

data: $\Delta \phi$ sidebands subtraction MC
Studying $\Delta \phi$ between the two muons

data: $\Delta \phi$ vs Pt sidebands subtraction
There are many differences between Data and MC generated variables. But in principle now we could also work without any MC simulation.
Conclusions

There are many differences between Data and MC generated variables. But in principle now we could also work without any MC simulation.

Prospectives

The sideband subtraction is a simple but efficient tool that works on this front. This tool is now in place for analyzing new variable (like hits) to optimize the cuts for a J/psi analysis.
The images depict graphs showing distributions of p_x with and without corrections.

- **p_x** graphs for p_x over p_x showing entries, mean, and RMS.
- **$p_x\psi_s$** graphs for p_x over $p_x\psi_s$ showing entries, mean, and RMS.
- **p_xGG** graphs for p_xGG over p_xGG showing entries, mean, and RMS.

Each graph includes a legend for different distributions and shows the distribution of data points with error bars.
eta

etaskovr

- Entries: 16930
- Mean: -0.002351
- RMS: 2.398

etajpsi

- Entries: 16930
- Mean: -0.002351
- RMS: 2.398

etajGpsovr

- Entries: 412
- Mean: -0.008476
- RMS: 1.802

etajpsi confronto

- Entries: 16930
- Mean: -0.002351
- RMS: 2.398

etajpsi confronto

- Entries: 412
- Mean: -0.008476
- RMS: 1.802
DeltaPt

DeltaPtsovr
- Entries: 16930
- Mean: -0.04087
- RMS: 2.194

DeltaPtGGsovr
- Entries: 412
- Mean: -0.1691
- RMS: 3.068

DeltaPt confronto
- Entries: 16930
- Mean: -0.04087
- RMS: 2.194

DeltaPtGG confronto
- Entries: 412
- Mean: -0.1691
- RMS: 3.068