Applicazioni dei Laser alle Scienze Mediche

• Proprieta’ della luce laser
 – coerenza
 – monocromaticita’
 – direzionalita’ ➔ concentrabilita’
 – brillanza ➔ intensita’
Laser in Medicina

- \(\text{CO}_2 \) (10600 nm)
- \(\text{Er:YAG} \) (2940 nm)
- \(\text{Ho:YAG} \) (2100 nm)
- \(\text{Nd:YAG} \) (1064 nm)
- Diodi (600-1000 nm)
- Dye (308-1300 nm)
- Alexandrite (710-820 nm)
- Rubino (694 nm)
- \(\text{Kr}^+ \) (568 nm)
- KTP (532 nm)
- \(\text{Ar}^+ \) (514 nm)
- Excimer (170-352 nm)
Nd:YAG

- Lungh.d’onda: 1064 nm, 1320 nm
- Materiale Attivo: Nd\(^{3+}\) in Y\(_3\)Al\(_5\)O\(_{12}\)
- Eccitazione: Krypton Lampada
- Potenza: <1 -- >100 W
- Modo operante: cw, p(20 ps - 5 ms)
- Assorbimento: Acqua (1064 e 1320 nm)
Nd:YAG (KTP potassium titanyl phosphate KTiOPO$_4$)

- Lungh.d’onda: 532 nm, 266 nm
- Materiale Attivo: Nd$^{3+}$ in Y$_3$Al$_5$O$_{12}$
- Eccitazione: Krypton Arc Lampada
- Potenza: <1 to >100 W
- Modo operante: cw, p(20 ps - 5 ms)
- Assorbimento: emoglobina (532 nm) e proteine, cornea (532 e 266 nm)
- Utilizzo medico: coagulazione in profondità, distr. termica masse tumorali, chirurgia vascolare, generale, oftalmica (effetto fotomeccanico)
Semiconduttori Diodi Laser

- Lunghezza d'onda: 800 (850 - 30000) nm
- Materiale Attivo: Semiconductor (e.g. GaAlAs)
- Eccitazione: DC/AC
- Potenza: <1 to >30 W (Diode array)
- Modo operante: cw, p(ps - ms)
- Assorbimento: Emoglobina e proteine
Ho/Er:YAG

- **Lungh.d’onda**: 2100/2936 nm (IR)
- **Medium Attivo**: Ho³⁺/Er³⁺ in YAG crystal
- **Eccitazione**: Xenon Flash-lamp
- **Potenza**: <1 to >20 W
- **Modo operante**: cw, p(ns - 1 ms)
- **Energia pulsata**: <0.1 to >2 J
- **Assorbita**: acqua, sclera dell’occhio
- **Utilizzo medico**: effetto termico (acqua!), trasp. su fibra (fotoablazione), chirurgia filtrante glaucoma, trattamenti odontoiatrici
CO\textsubscript{2}

- **Lungh.d’onda**: 9600/10600 nm (IR)
- **Materiale Attivo**: Mixture of CO\textsubscript{2}, N\textsubscript{2}, He
- **Eccitazione**: DC / RF discharge
- **Potenza**: <1 to >100 W
- **Modo operante**: cw, p(100 ps - 0.1 s)
- **Assorbimento**: acqua
- **Utilizzo medico**: effetto termico (acqua!), coagulazione superficiale, chirurgia generale (bisturi), terapia termica tumori, chirurgia ORL, ginecologia, lesioni virali, urologia, neurochirurgia
• Lungh.d’onda: 488 nm, 514.5 nm
• Materiale Attivo: Ar ionizzato
• Eccitazione: DC / RF discharge
• Potenza: <1 to >100 W
• Modo operante: cw, p(100 ps - 0.1 s)
• Assorbimento: emoglobina
• Utilizzo medico: effetto termico, fotocoagulazione, utilizzo oftalmico (trattamento retina regione maculare)
Eccimeri

- Lungh.d’onda: UV: ArF 193 nm, KrF 248 nm
- Materiale Attivo: alogenuri di gas nobili eccitati
- Eccitazione: DC / RF discharge
- Potenza: <1 to >100 W
- Modo operante: p(100 ps - 0.1 s)
- Assorbimento: stroma corneale, polimeri organici
- Utilizzo medico: effetto fotoablativo, fotoablazione stroma corneale in chirurgia rifrattiva, ablazioni tissutali precise
Coloranti

- Lungh.d’onda: 300-1300 nm (570-650 nm Rhodamina)
- Materiale Attivo: coloranti organici in soluzione
- Eccitazione: DC / RF discharge
- Modo operante: p(100 ps - 0.1 s)
- Assorbimento: legato alla frequenza
- Utilizzo medico: fotocoagulazione (campo oftalmico) l’accordabilita’ in frequenza permette di scegliere selettivamente il tessuto da fotocoagulare
Interazione laser - tessuti

Parametri fondamentali:

• lunghezza d’onda della radiazione
• intensità della radiazione
• tempo di esposizione
• coefficienti di assorbimento e trasmissione dei tessuti
• profondità di penetrazione della radiazione
Mappa di interazione medica dei laser

- Interazione termica
- Interazione fotochimica
- Interazione fotoablativa
- Interazione elettro-mechanica
Interazione termica

• durata impulso: $10^{-3} – 5 \text{s}$

• concentrabilita’: spot micro o millimetrici

• conversione di energia EM in energia termica

• eccitazione di stati vibrazionali molecole (MW-IR: 3-8 µm) $h\nu + A \rightarrow A^*$ (dimensioni maggiori) \rightarrow scattering anelastico con altre molecole ($t \sim 100 \text{ ps}$) \rightarrow aumento di energia cinetica \rightarrow aumento temperatura
Coefficiente assorbimento tessuti:

1000 nm (IR) – 190 nm (VUV)

Lunghezza d’onda della radiazione
Parametri fisici differenti Laser

<table>
<thead>
<tr>
<th>Laser</th>
<th>Lunghezza d’onda [µm]</th>
<th>Coefficiente di assorbimento [1/cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanina</td>
<td>0.2-20</td>
<td>0.0001-100,000</td>
</tr>
<tr>
<td>Emoglobina</td>
<td>1.0-10</td>
<td>0.001-1,000</td>
</tr>
<tr>
<td>Acqua</td>
<td>10-20</td>
<td>0.01-100,000</td>
</tr>
<tr>
<td>Excimer</td>
<td>0.2-20</td>
<td></td>
</tr>
<tr>
<td>Argon KTP</td>
<td>1.0-10</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>10-20</td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>10-20</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>10-20</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>10-20</td>
<td></td>
</tr>
</tbody>
</table>
Acqua

- presente abbondantemente in tutti i tessuti

- picco di assorbimento a 2940 nm, buon assorbimento IR

- $\text{CO}_2(10600 \text{ nm})$ e Nd:YAG(1064 nm)

- CO_2: effetto bisturi (effetto termico), precisione (diametro del fascio), senza danno (effetto emostaticizzante vs piccoli vasi sanguigni): tagli piu’ puliti e meno invasivi

- Nd:YAG: profondità di penetrazione piu’ elevata ($\sim100 \mu\text{m}$ contro i 20-30 μm del CO₂) \Rightarrow azione profonda in tessuti connettivi.

Anche usato per vaporizzazione di tumori ($P \rightarrow 100 \text{ W}$)
• $\text{Ar}^+(488 \text{ e } 514.5 \text{ nm})$: assorbito da \textbf{emoglobina} \rightarrow coagulazione sottocutanea lesioni

stratum corneum 10-40 \(\mu\)m
stratum Malpighi \rightarrow 100 \(\mu\)m
derma
subcutis

profondita’ di penetrazione della radiazione nella pelle umana
Temperatura e danni ai tessuti

- 43°C-45°C Ipertermia, cambiamento conformaz. cellule
- 50°C Riduzione attivita’ enzimi
- 60°C Coagulazione, scioglimento proteine
- 80°C Carbonizazione, scioglimento collagene
- 100°C Formazione vacuoli extracellulari
- > 100°C Rottura vacuoli
- 300-1000°C Termoablazione del tessuto
- 3350 °C Vaporizzazione del carbonio
Terapia tumori

Necrosi selettiva dei tessuti: fibra ottica, luce laser portata endoscopicamente nella massa tumorale (tessuto tumorale più sensibile alla temperatura del tessuto sano) fino a 45°C -> necrosi

Chirurgia tumorale d’urgenza: vaporizzazione di masse tumorali che ostruiscono vasi sanguigni grossi o vie respiratorie
I danni termici dipendono dalla vaporizzazione

Fascio Pulsato

Fascio Continuo

Tempo

Danni termici causati dalla conduzione del calore
Per minimizzare i rischi di danni termici sul tessuto si deve usare un Laser Pulsato.
Assorbimento del tessuto con due tipi diversi di laser

Assorbimento del raggio laser in questa regione
Basso assorbimento

La luce non è radiata e dispersa in profondità

Alto assorbimento e dispersione

La luce è dispersa e trasmessa in profondità

Per minimizzare le necrosi scegliere un Laser a basso assorbimento
Interazione elettromeccanica

- durata impulso: 10 ns – 20 ps
- Nd:YAG Q-switched o Mode-Locked
- Impulso corto focalizzato sul bersaglio
- Produzione di alta intensità di energia ($I \sim 10^{10-10^{11}}$ W/cm2)
- Produzione di campi elettrici elevati ($E \sim 10^6-10^7$ V/cm)
- Breakdown dielettrico ($E_{\text{laser}} \sim E_{\text{ionizz.molecola}}$)
- Formazione di plasma di elettroni liberi (emissione termoionica (10^{11} W/cm2)/assorbimento multiplo di fotoni (10^{14} W/cm2; 10 J/cm2; $N_e \sim 10^{21}$ cm$^{-3}$, $T>20000$°C)
- Propagazione di onda d’urto sferica alla velocità del suono ($l \sim 30\mu$m)
- Rottura meccanica localizzata tessuti (pressione (kbar)> forza di coesione tessuti)
Utilizzo

Campo oftalmico: rimozione tissutale entro il bulbo ottico senza incisioni (retinopatie, rimozione tessuti opachi post cataratta)

Rimozione di calcoli: pressione onda d’urto del plasma

Patologie cardiovascolari: rimozione trombi in vasi piccoli
Interazione fotochimica

• durata impulso: 10 ns – 100 µs

• Interazione che avviene per mezzo dei tessuti fotosensibili (cromofori [Acidi nucleici (DNA, RNA), aminoacidi, proteine: 250-300 nm] e pigmenti)

• selettività’ del bersaglio

• Reazione chimica: energia trasmessa dalla reazione produce mutamento delle macromolecole biologiche (trasformazione fotochimica) → isomero o nuova molecola

• Modalità’: fotosensibilizzazione e fotoablazione
Fotosensibilizzazione

- Fotoattivazione di molecole dovuta alla luce (cura dei tumori: terapia fotodinamica PDT): porfirine

Spettro di assorbimento di alcuni fotosensibilizzanti, es. ematoporfirina (linea continua). Nel caso dell’ematoporfirina il picco di assorbimento si ha intorno ai 400 nm ma la luce con cui si irradiano i tessuti è di 630 nm (in corrispondenza di un picco molto basso di assorbimento); tale tecnica si usa per permettere una forte penetrazione della radiazione internamente al tessuto tumorale aumentando così l’efficienza del trattamento.
Processo:

1. Inserimento del fotosensibilizzante
2. Ritenzione selettiva da parte del tessuto tumorale
3. Irraggiamento laser
4. Eccitazione risonante del fotosensibilizzante: \(P + h\nu \rightarrow P^* \)
5. Decadimento veloce di \(P^* \) (20 ns) e trasferimento di energia a molecole \(O_2 \)
6. Produzione di radicali liberi che si legano alle pareti dei lipidi e degli acidi nucleici
7. Eradicamento del tumore

✓ Scarso danno termico a tessuti sani
✓ Risultati più duraturi vs terapia termica
✓ Sostanze fotosensibilizzanti \(\rightarrow \) radicali liberi nell’organismo (no luce)
Diagramma del trasferimento dell’energia da una sostanza fotosensibile (ematoporfirina) alle molecole di ossigeno. La molecola assorbe un fotone con un conseguente salto di un elettrone verso orbitali esterni vuoti (S1 e S2). Dopo circa 20 nsec possono verificarsi tre fenomeni: il primo è un decadimento radiativo con emissione di fluorescenza, il secondo è una conversione dell’energia in calore e il terzo un cambiamento di stato dell’elettrone il quale modifica solo lo spin (stato di tripletto T1 e T2). Quest’ultimo fenomeno è statisticamente dominante e porta a sua volta ad altri fenomeni: il primo è un decadimento radiativo con emissione di fosforescenza e il secondo (che è quello che ci interessa) un trasferimento energetico alle molecole di ossigeno che, eccitandosi, producono radicali liberi.
Fotoablazione

Forte assorbimento di biomolecole nel range 200-320 nm (energia ~6 eV, > energia legami molecolari); impulsi ~ 15 ns; dissociazione di macromolecole in fotoprodotti repulsivi: AB → A⁺ B⁻; energia residua → energia cinetica prodotti → espulsione

Processo:

1. Impulsi laser UV focalizzati sul tessuto (I~10⁸ W/cm²)

2. Forte assorbimento di impulso UV (6 eV) da proteine, amidi, peptidi (profondita’ di penetrazione ~ 1µm)

3. Eccitazione delle macromolecole

4. Fotodissociazione in fotoprodotti repulsivi

5. Espulsione dei fotoprodotti (no necrosi tessuti)

Laser UV: ArF (193 nm), KrF (248 nm) e Nd:YAG (266 nm, IV armonica)

Applicazioni: Chirurgia rifrattiva dell’occhio, tecniche PRK a LASIK