The sensitivity of KASCADE-Grande to the cosmic ray primary composition between 10^{16} and 10^{18} eV

E. Cantoni (*) for the KASCADE-Grande collaboration

* University of Torino and Istituto di Fisica dello Spazio Interplanetario di Torino, ITALIA.

Location: Forschungszentrum Karlsruhe (D).

Goal: Study cosmic ray energy spectrum & primary composition in the range 10^7 - 10^9 eV through Extensive Air Showers detection.

- **Grande array:** KASCADE array work jointly.
 - KASCADE array: 252 scintillation detectors, 622 m^2 muon detection area.
 - Grande array: 37 scintillator modules 10 m^2 each, over 7000 m^2.

- Expansion of KASCADE acceptance increases $>10^9$ without significant loss in resolution.

- Charged particle size N_p of each EAS measured with Grande, muon size N_M measured with KASCADE.
- Electron size N_e obtained from subtraction of muon from charged particle density.
- Accurate event reconstruction achieved [1][2].

Fit with a single primary: bad one element cannot describe the data selection.
Each simulated primary overlapping the data selection gives:

<table>
<thead>
<tr>
<th>Primary</th>
<th>Proton</th>
<th>Helium</th>
<th>Carbon</th>
<th>Silicon</th>
<th>Iron</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2</td>
<td>$6.79/0.09$</td>
<td>404.59</td>
<td>26.44</td>
<td>17.20</td>
<td>10.44</td>
</tr>
</tbody>
</table>

Fit with two primaries: Fits step up but at least a third element is required.
Here and in next pictures: experimental plot normalized to 1; each primary normalized to relative abundance. Right side star: rate of events beyond 2RMS.

- Left side: rate of events below 2RMS.
- E_{γ}: $6.11 < \log(N_p) < 6.36$.

Checking consistency of the result:
- At larger zenith angles (deeper atmospheric depths): some fits performed in larger bin of equal acceptance 29.86° to 40°.
- The present analysis: next step for experimental results validation.
- It verifies:
 - KG sensitivity to different primaries.
 - KG data reproducibility with hadronic interaction model QGSJetII as a function of electron size and atmospheric depth.
 - Consistency of these observations with KASCADE in an overlapping energy region.

- In this analysis:
 - Electron size N_e and muon size N_M of each event are considered.

Features of the analysis:
- Data selection: $6.49 < \log(N_p) < 6.74$, $0^\circ < \theta < 23.99^\circ$.
- Full reconstruction efficiency + high statistics.
- Same event selection on QGSJetII simulated primaries: p, He, C, Si, Fe.
- N_p/N_e experimental distribution of selected events is studied.
- N_p/N_e histogram is fitted with a linear combination of elemental contributions from simulations:

 $F_{\text{sim}}(i) = \sum_{i} a_i F_{\text{sim}}(i)$

- $F_{\text{sim}}(i)$ total theoretical fraction of events falling in channel i.

- a_i total fraction for the single primary element α.
- Σ_{i} sum over the different primaries.

- Fit performed through minimization of following Chi Square:

 $\chi^2 = \sum_{i} (F_{\text{exp}}(i) - F_{\text{sim}}(i))^2 / \text{of}(i)$

- Conditions for fit parameters:
 - a_i fixed for each α.
 - $\Sigma a_i = 1$.

Comparison with KASCADE data: in overlapping region $6.11 < \log(N_p) < 6.36$, 29.86° to 40°.

- Generally QGSJetII is well reproducing the KASCADE data.

(*) University of Torino and Istituto di Fisica dello Spazio Interplanetario di Torino, ITALIA.