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Abstract: This paper describes the performance of a prototype timing detector, based on 50 µm
thick Ultra Fast Silicon Detector, as measured in a beam test using a 180GeV/c momentum pion
beam. The dependence of the time precision on the pixel capacitance and bias voltage is investigated
in this paper. A timing precision from 30 ps to 100 ps (RMS), depending on the pixel capacitance,
has been measured at a bias voltage of 180 V.
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1 Timing detector for the TOTEM proton time of flight measurement at the LHC

The TOTEM experiment will install new timing detectors to measure the time of flight (TOF) of
protons produced in central diffractive (CD) collisions at the LHC [1].

The CD interactions measured by TOTEM at
√

s = 13 TeV are characterized by having two
high energy protons (with momentum greater than 5 TeV) scattered at less than 100 µrad from
the beam axis. In the presence of pile-up1 events it is necessary to associate each particle to its
production vertex so that the event properties are correctly measured. The TOF detectors installed
in the TOTEM Roman Pots (RPs)2 will measure with high precision the arrival time of the CD
protons on each side of the interaction point. They will operate in the LHC with a scenario of
moderate pile-up (about one interaction per bunch crossing) and a time precision of at least 50 ps
per arm is required to efficiently identify the event vertex [2]. Since the difference of the arrival
times is directly proportional to the longitudinal position of the interaction vertex (zVTX = c∆t/2),
a precision of 50 ps will allow knowing the longitudinal interaction vertex position to less than 1 cm.

The timing detector will be installed in four vertical RPs located at 210m from the interaction
point 5 (IP5) of the LHC. The detector comprises four identical stations, each consisting of
four hybrid boards3 equipped either with an ultra fast silicon detector (UFSD) [3–6] or with a
single crystal chemical vapor deposition (scCVD) diamond sensor [7, 8]. Every board houses 12
independent amplifier each bonded to a single pad (pixel) of the sensor. The typical time precision
of one plane equipped with scCVD is in the range of 50 - 100 ps, while it is in the 30 - 100 ps range
for one equipped with an UFSD sensor. Combining TOF measurements from 4 detector planes
will provide an ultimate time precision better than ∼50 ps, which translates in a precision on the
longitudinal position of the interaction vertex σz <1 cm.

1Probability that more than one interaction is produced during the same bunch crossing.
2Special movable insertion in the LHC vacuum beam pipe that allow to move a detector edge very close to the

circulating beam.
3The particle sensor and the amplification electronic are mounted on the same PCB.
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2 Ultra Fast Silicon Detector

Ultra Fast Silicon Detectors, a new concept in silicon detector design, associate the best characteris-
tics of standard silicon sensors with the main feature of Avalanche Photo Diodes (APD). UFSD are
thin (typically 50µm thick) silicon Low Gain Avalanche Diodes (LGAD) [9, 10], that produce large
signals showing hence a large dV/dt, a characteristic necessary to measure the time (t) accurately.
Charge multiplication in silicon sensors happens when the charge carriers drift in electric fields of
the order of E ∼ 300 kV/cm. Under this condition the drifting electrons acquire sufficient kinetic
energy to generate additional electron/hole pairs. A field value of 300 kV/cm in a semiconductor
can be obtained by implanting an appropriate charge density around ND ∼ 1016/cm3, that will
locally generate the required very high fields. Indeed in the LGAD design (figure 1) an additional
doping layer is added at the n − p junction which, when fully depleted, generates the high field
necessary to achieve charge multiplication.

Figure 1. Comparison of the structures of a silicon diode (left) and a Low-Gain Avalanche Diode (right).
The additional p+ layer near the n++ electrode creates, when depleted, a large electric field that generates
charge multiplications.

First results of time resolution of thin LGADs (UFSD) in a beam test have been published in
2016 [11].

Radiation tolerance studies have shown [12, 13] that LGAD sensors can withstand up to 1014

equivalent neutron/cm2 without loss of performance.
LGAD sensors can be built in many sizes and shapes, ranging from thin strips to large pads.

The measurements reported here have been performed on a 2 cm2 50µm thick UFSD sensor,
manufactured by CNM4 with a structure specifically designed for the TOTEM experiment, mounted
on a standard TOTEM hybrid board [7].

3 Description of the UFSD-based timing board

The UFSD sensor used for the prototype timing plane has 16 pixels with the pixel layout shown in
figure 2.

Prior to the gluing of the sensor on the hybrid board, each of the 16 pixels had been tested to
determine its maximum operating voltage.

4http://www.cnm.es: Centro Nacional de Microelectrónica, Campus Universidad Autónoma de Barcelona. 08193
Bellaterra (Barcelona), Spain.
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Figure 2. Sensor geometry of the TOTEM UFSD prototype made up of 16 pixels of different dimensions.

Figure 3. The UFSD sensor mounted on the TOTEM hybrid board.

Only pixels with a breakdown voltage higher than 180V and a leakage current lower than
0.1mA, were bonded to the read-out amplifier by means of standard 25 µm aluminum wires
(figure 3).

The UFSD output pulse current shape simulated with the simulation program Weightfield2,5
developed particularly for LGAD devices [14], assuming a bias voltage of 200V and a sensor gain
of 10 is shown in figure 4.

The detector generates a current whose maximum is about 8 µA.
Capacitance of the 50 µm thick UFSD pixels scales linearly with their area as ∼ 2 pF/mm2:

dimensions and relative capacitance for the pixels measured here are summarized in table 1.

5Open source code may be found at http://personalpages.to.infn.it/∼cartigli/Weightfield2/Main.html.
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Figure 4. Simulations of the pulse shape from a 50 µm UFSD with a gain of 10 (from [15]). The plot shows
the contribution of each component of the generated charge.

.
Table 1. Characteristics of the 50 µm UFSD pixels used in the tests.

Pixel N Surface Capacitance Preamplifier feedback
[mm2] [pF] [ohm]

1 1.8 3.1 1 k
2 2.2 4.4 1 k
3 3.0 6.0 1 k
4 7.0 14 1 k
5 14 28 300

4 Front end electronics

Given the UFSD intrinsic charge amplification one expects the primary charge presented at the input
of the amplifier to be 10-100 times larger than the one expected from a diamond sensor. The TOTEM
hybrid, originally designed for scCVD diamonds [7], was modified for the UFSD eliminating the
second amplification stage, referred elsewhere as ABA (Avago Broadband Amplifier ABA-53563).
The amplification chain for UFSD has only 3 active elements (one BFP840ESD and two BFG425W
BJT transistors). Moreover, since the UFSD pixels have a larger capacitance than diamond sensors,
in order to maintain a fast rise time the feedback resistor of the preamplification chain has has been
reduced to 1kΩ or 300Ω, accordingly to the capacitance of the pixel (see table 1).

5 Test beam measurements

The time precision of the UFSD sensors has been measured at the H8 beam line of the CERN SPS
with a 180GeV/c pion beam, by computing the time difference of the signal produced by particles
crossing a Micro Channel Plate (MCP) PLANACONTM 85011-5016 and one of the UFSD pixels.
The particle rate was ∼ 103 /mm2/s, the HV on the UFSD was set initially at 180V, which is
the maximum voltage before pixels breakdown, and varied down to 140V. The maximum current

6PLANACONTM Photomultiplier tube assembly 85011-501 from BURLE.
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allowed in the present measurement was 0.1mA. A screen shot from the oscilloscope with the
signals from the MCP and the UFSD detectors is shown in figure 5.

Figure 5. Event display of several MCP (top) and UFSD (bottom) signals. The oscilloscope record was
triggered by the UFSD signal.

The UFSD pixels that we tested have an area ranging between 1.8mm2 and 14mm2. The
2.2 mm2 UFSD pixel shows an average Signal to Noise Ratio (SNR) of ∼60 (figure 6), defined as
the ratio between the pulse height and the RMS voltage of the baseline. The risetime, defined as
the average time for the signal to go from 10% to 90% of its maximum, is 0.6 ns (figure 7).

Figure 6. Signal to Noise ratio of the MCP and of the 2mm2 UFSD pixel.

The UFSD SNR curve for the events used in this analysis does not show the typical Landau
curve tail; this is due to the saturation of ∼ 10% of the signals and may include the effect of a non
linearity in the modified amplification chain.

Signals are recorded with a 20 GSa/s DSO9254A Agilent oscilloscope. The time difference
between the MCP and the 2.2 mm2 UFSD pixel is shown in figure 8. The difference is computed

– 5 –
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Figure 7. Risetime of the MCP and of the 2mm2 UFSD pixel.

off-line by using a constant fraction discrimination with a threshold at 30% of the maximum for
both the UFSD and the MCP signal.

Figure 8. Difference of the arrival time measured by the MCP and by the 2.2mm2 UFSD pixel biased at
180V.

The MCP time precision was obtained from other measurements and is (40±5) ps. The results
of the measurements are summarized in table 2.

Figures 9 and 10 show the UFSD time precision7 as a function of the pixel capacitance and of
the applied bias voltage respectively; the second set of measurements was performed on the pixel
with an area of 2.2mm2. The precision of the measurement is mainly due to the uncertainty with
which the MCP time precision is known.

The trend of the measurements suggests that a time precision of less than 30 ps could be reached
for the smallest area pixel biased at 200V.

7To estimate the UFSD time precision the standard deviation (σDT ) of the distribution of the arrival time difference
between the MCP and the UFSD pixel is calculated in advance. The UFSD time precision, σUFSD , is then obtained as
σUFSD =

√
σ2
DT
− σ2

MCP
, with σMCP =40 ps.

– 6 –
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Table 2. Results of the time precision measurements as a function of the pixel capacitance, pixel surface area
and of the applied bias Voltage. The uncertainty on the measured values is of ∼ 5 ps and depends essentially
on the uncertainty of the MCP reference measurement.

Surface Capacitance HV Time precision
[mm2] [pF] [V] [ps]
1.8 3.1 180 32
2.2 4.4 180 33
3.0 6.0 180 38
7.0 14 180 57
14 28 180 102
2.2 4.4 140 49
2.2 4.4 160 41
2.2 4.4 180 33

Figure 9. UFSD time precision as a function of the pixel capacitance for a bias of 180V.

Figure 10. UFSD time precision (2.2mm2 pixel) as a function of the applied bias Voltage.

6 Conclusions

In this contribution we described the timing performance of a 50 µm thick UFSD detector on a
beam of minimum ionizing particles. A time precision in the range of 30-100 ps has been measured,
depending on the pixel capacitance. The UFSD technology will be used by TOTEM experiment in
the vertical RPs together with scCVD sensors.

– 7 –
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