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In this contribution we will review the progresses toward the construction of a tracking system able to
measure the passage of charged particles with a combined precision of ∼10 ps and ∼10 μm, either using a
single type of sensor, able to concurrently measure position and time, or a combination of position and
time sensors.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. The effect of timing information

The inclusion of timing information in the structure of a re-
corded event has the capability of changing the way we design
experiments, as this added dimension dramatically improves the
reconstruction process. Depending on the type of sensors that will
be used, timing information can be available at different stages in
the reconstruction of an event, for example (i) at tracking re-
construction, if timing is associated to each point or (ii) during the
event reconstruction, if timing information is associated to each
track. In the first case, the 4th dimension brings a simplification
already in the reconstruction algorithm as only time-compatible
hits are used in the pattern recognition phase, however the elec-
tronics is very demanding as it needs to be able to accurately
measure timing in each pixel. The second case is simpler as it
B.V. This is an open access article u
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requires the implementation of a dedicated timing layer, either
inside or outside the main silicon tracker volume, to assign the
timing information to each crossing track without changing the
vast majority of the tracker hardware. The timing information can
then be used to improve Level 1 trigger decisions, as it can be
obtained faster than tracking reconstruction, and to separate
events with overlapping vertices.

Considering a specific situation, at HL-LHC the number of
events per bunch crossing will be of the order of 150–200, with an
average distance between vertexes of 500 micron and a timing
rms spread of 150 ps. Considering a vertex separation resolution of
250–300 micron along the beam direction (present resolution for
CMS and ATLAS), there will be 10–15% of vertexes composed by
two overlapping events. This overlap will cause a degradation in
the precision of the reconstructed variables, and lead to loss of
events. Examples where timing information is crucial to avoid loss
of measuring accuracy are a) the correct assignment of each par-
ticle to its event when two interactions overlap, b) the
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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identification of the correct γγ→H vertex , and c) the association
of displaced tracks to the correct vertex. We can therefore con-
clude that timing information at HL-LHC is equivalent of having
additional luminosity.
2. Time-tagging detectors

In the following we will use a simplified model to explore the
timing capabilities of various detectors (for a review of current
trends in electronics see for example [1]): the sensor, thought as a
capacitor (CDet) with a current source in parallel, is readout by a
pre-amplifier that shapes the signal. The pre-amplifier's output is
then compared to a fixed threshold ( )VTh to determine the time of
arrival. The time resolution st can be expressed as the sum of
several terms: (i) Jitter, (ii) Landau Time Walk (iii) Landau noise
due to shape variation, (iv) signal distortion, and (v) TDC binning:

σ σ σ σ σ σ= + + + + ( ). 1t Jitter Land TW Land noise Distortion TDC
2 2

.
2

.
2 2 2

We will assume in the following two simplifications:

� We consider the effect of time walk (see [2] for details)
compensated by an appropriate electronic circuit (either Con-
stant Fraction Discriminator or Time over Threshold). With this
assumption, the effect of Landau variations in signal amplitude
are compensated, but not that of shape variation. This second
contribution is indicated as Landau noise σ( )Land Noise.

2 in Eq. (1).
� The contribution of TDC binning to be below 10 ps and therefore

negligible.

2.1. Jitter

The jitter term represents the time uncertainty caused by the
early or late firing of the comparator due to the presence of noise.
Fig. 1. a) Energy deposits in a silicon detector with ga
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It is directly proportional to the noise N and it is inversely pro-
portional to the slope of the signal around the value of the com-
parator threshold. Assuming a constant slope we can write

=dV dt S t/ / r and therefore:

σ = =
( )

N
dV dt

t
S N/ /

.
2

J
r

2.2. Landau fluctuations: time walk and Landau noise

The ultimate limit to signal uniformity is given by the physics
governing energy deposition: the charge distribution created by an
ionizing particle crossing a sensor varies on an event-by-event
basis. These variations not only produce an overall change in signal
magnitude, which is at the root of the time walk effect (that we
assumed perfectly corrected by electronics), but also produce an
irregular current signal (Landau noise). The left part in Fig. 1 shows
2 examples of the simulated [3] energy deposition of a minimum
ionizing particle, while the right part the associated generated
current signals and their components: the variations are rather
large and they can severely degrade the achievable time
resolution.

2.3. Signal distortion: weighting field and drift velocity

In every particle detector, the shape of the induced current
signal can be calculated using Ramo's [4] theorem that states that
the current induced by a charge carrier is proportional to its
electric charge q, the drift velocity v and the weighting field Ew:
( ) ∝i t qvEw . This equation indicates two key points in the design of
sensors for accurate timing. First, the drift velocity needs to be
constant throughout the volume of the sensor. Non-uniform drift
velocities induce variations in signal shape as a function of the hit
position, Fig. 2a, spoiling the overall time resolution. The easiest
in =1, and (b) the corresponding current signals.
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Fig. 2. a) Effect of velocity variation on the signal shape and b) weighting field for two configurations: (left) wide strips, (right) thin strips.
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way to obtain uniform drift velocity throughout the sensor is to
have an electric field high enough to move the carriers with sa-
turated drift velocity. Second, strips need to have the width very
similar to the pitch, and these two dimensions need to be larger
than the sensor thickness: ∼ ⪢width pitch thickness. These re-
quirements are making the weighting field very uniform along the
strip width, as shown in Fig. 2b.

2.4. Roadmap

The integration of time-tagging capabilities into a position
sensor produces a steep increase in system complexity. Part of this
complexity can be addressed by very smart architectures, new
technological nodes (for example 65 nm) allowing higher circuit
densities and new chip designs. However having sensors and
electronics built on separated substrates will ultimately limit the
level of integration and drive the cost. Most likely the real turning
point of 4D tracking will happen when monolithic technology will
be mature enough to allow integrating the sensor and the elec-
tronics in the same substrate, reducing interconnections and
keeping the capacitance of each sensor low.
3. Possible detectors for a 4D tracker

Assuming that a 4D tracker should maintain the key aspects of
current 3D tracker designs, then the type of possible detectors is
limited by material budget consideration to semiconductor de-
vices, mostly silicon and diamond. Assuming some overall design
aspects equal (saturated drift velocity, weighting field, manu-
facturing capability, cost), the key quantity to be minimized by
every detector is the jitter term expressed by equation Eq. (2). We
will here briefly review 4 possible approaches, concentrating on
Ultra-Fast Silicon Detectors.

3.1. Silicon detectors

Standard silicon detectors can be used in timing applications,
provided the sensor geometry is appropriate. Currently the NA62
experiment [5] is employing a track-timing detector, the so called
GiGatracker, that uses 200-micron thick sensors with 300-micron
pixels. The expected time resolution is around σ ∼ 150 pst . Em-
ploying an extremely low noise new circuit [6], a resolution of
σ ∼ 105 pst has been reached using a 100-micron thick, 2 mm
square pad sensor. Standard silicon sensors have therefore the
capability of reaching good time resolutions, however it is rather
Please cite this article as: N. Cartiglia, et al., Nuclear Instruments & M
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difficult to reach resolutions better than σt∼80–100 ps given their
small signal.

3.2. Diamond detectors

Diamond has a large energy gap therefore it has almost no
leakage current, it is radiation resistant, it has a small dielectric
constant, so the capacitance is low, and carriers have high mobi-
lity. The main drawback is the small signal amplitude (due to the
large energy gap), and the limited commercial offer. There are
currently two techniques to increase the signal amplitude: a)
stacking sensors - overlapping several sensors that are read in
parallel - and b) grazing - placing the sensors with the surface
parallel to the direction of the particle. Diamond detectors have
been therefore used successfully as time tagging sensors since
they have low noise (due to their small capacitance), and a large
dV dt/ . The best result achieved so far has been σ ∼ 100 pst , ob-
tained by the TOTEM collaboration. Given the difficulties of large
scale production, diamond detectors are therefore ideally suited
for small area sensors in high radiation environments.

3.3. APD – Avalanche PhotoDiode

APD can successfully be employed in the detection of charged
particles. APD are normally quite thin, 30–50 micron, so the initial
number of charge carriers generated by a MIP particles is rather
small, 2–3000 e/h pairs, however their signal is very large since
they have a gain of the order of 50–500. Given the short drift
distance, the signal is very short and steep, with a very large dV dt/ :
APD have therefore excellent time resolution, of the order of
σ ∼ 30 pst . The same quality that makes APD very good timing
sensors, high gain, is however also causing drawbacks: (i) when
irradiated, APD have very high Shot noise (due to the multi-
plication of the leakage current, see Section 3.4.2), (ii) they cannot
be easily segmented, and (iii) they suffer from electric breakdown.
APD are therefore a very good choice for single pad systems in low
radiation environments. Their use as segmented sensors in high
radiation experiments still need to be demonstrated.

3.4. LGAD – Low-Gain Avalanche Detectors

LGAD is a new concept in silicon detector design, merging the
best characteristics of standard silicon sensors with the main
feature of APDs. The overarching idea is to design silicon detectors
with signals that are a factor of 10 higher than those of standard
sensors, however without the problems connected with the APD
ethods in Physics Research A (2016), http://dx.doi.org/10.1016/j.
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Fig. 3. Schematic of a traditional silicon diode (left) and of a Low-Gain Avalanche Diode (right).
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high gain [7–9]. Charge multiplication in silicon sensors happens
when the charge carriers are in electric fields of the order of

∼E 300 kV/cm. Under this condition the electrons (and to less
extent the holes) acquire sufficient kinetic energy that are able to
generate additional e/h pairs. A field value of 300 kV/cm is ob-
tained by implanting an appropriate charge density that locally
generates very high fields ( ∼ )N 10 /cmD

16 3 . The gain has an ex-
ponential dependence on the electric field ( ) = α ( )N l N eo

E l, where
α ( )E is a strong function of the electric field and l is the path length
inside the high field region. The additional doping layer present at
the −n p junction in the LGAD design, Fig. 3, generates the high
field necessary to achieve charge multiplication. We have devel-
oped a full simulation program, WF2 [3], to study the property of
signal formation in silicon detectors and the effect of gain. Ac-
cording to WF2, LGAD have the potentiality of replacing standard
silicon sensors in almost every application, with the added ad-
vantage of having a large dV dt/ and therefore being able to mea-
sure time accurately. In the following, we will use the name of
“Ultra-Fast Silicon detectors” (UFSD) to indicate LGAD sensors op-
timized for timing performances.

3.4.1. UFSD: landau noise
With WF2 we have studied in details the effect of Landau noise

on time resolution, Fig. 4. The picture shows several important
effects: (i) Landau noise sets a physical limit to the precision of a
given sensor which is of the order of 20 ps in thin sensors, and
much larger for thicker sensors, (ii) Landau noise is minimized by
setting the comparator threshold as low as possible, and (iii) thin
detectors are less prone to Landau noise.

3.4.2. UFSD: shot noise and irradiation effects
Shot noise arises when charge carriers cross a potential barrier,

as it happens in silicon sensors. Assuming an electronics integra-
tion time τ, the equivalent noise charge is given by:

τ= ( )ENC I e/ 2Shot Bulk , where IBulk is the leakage current generated
in the bulk collected by the read-out electrode. In sensors such as
UFSD or APD this effect is enhanced by the gain and for this reason
Fig. 4. Effect of Landau noise on time resolution. Best results are obtained for thin
sensors with a low comparator threshold.
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Shot noise can be the dominant source of noise. Moreover, when
carriers undergo multiplication, there is an additional mechanism
that enhances Shot noise: multiplication is a stochastic process,
therefore some carries multiply more than others, causing a noise
increase, the so called excess noise factor (ENF). The expression for
Shot noise in device with gain is therefore:

τ=
( )

ENC
I M M

e2 3Shot
Bulk

x2

where M is the gain value, and x is the excess noise index. ENF
causes a very peculiar effect: in device with gain, as the gain in-
creases the signal-to-noise ratio (S/N) becomes smaller since Shot
noise increases faster ( ∝ )+M x2 than the signal ( ∝ )M . In order to
obtain a beneficial effect from the gain mechanism is therefore
necessary to have a gain value small enough ( ≤ )gain 20 such that
the signal increases while the noise increment is still in the sha-
dow of the electronic noise floor. Fig. 5 shows the value of Shot
noise for a 4 mm2 50-micron thick silicon sensor as a function of
radiation dose, assuming a 2-ns long integration time. In the plots
the electronic noise is assumed to be 450 ENC. Fig. 5a demon-
strates the dramatic effect of gain on Shot noise, while Fig. 5b the
effect of temperature (leakage current decreases a factor of 2 every
7°). Fig. 5 demonstrates that Shot noise can become the most
important source of noise for irradiated sensors with gain, and
suggests that small volumes and low temperature can keep this
effect under control provided the gain is low enough.

Radiation damage causes three main effects: (i) decrease of
charge collection efficiency [10], (ii) increase of leakage current,
causing Shot noise see 3.4.2, and (iii) changes in doping con-
centration. UFSD sensors have shown a decrease of gain values for
fluences above n10 /cmeq

14 2, with a complete disappearance of the
gain at n10 /cmeq

15 2. This effect has not been understood yet, but
there are two possible explanations: (i) an inactivation of accep-
tors due to radiation defects [11], and/or (ii) a dynamic reduction
of the gain layer doping due to charge trapping.

3.4.3. UFSD: testbeam results and extrapolation
We have performed several beam tests to validate the design of

UFSD sensors. The results, together with simulation predictions,
are shown in Fig. 6. The best resolution for 300-micron thick
sensors is σ ∼ 120 pst , equally due to, according to simulation,
jitter and Landau noise contributions; a dramatic improvement is
predicted for thin sensors, reaching a resolution of σ ∼ 30 pst for
50-micron thick sensors.
4. Conclusions and outlook

Tracking in 4 dimensions requires the development of dedi-
cated sensors and associated electronics. Several approaches are
ethods in Physics Research A (2016), http://dx.doi.org/10.1016/j.
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Fig. 5. (a) Shot noise increase as a function of fluence for two different gain values. (b) Shot noise increase as a function of fluence for two different temperature values.

Fig. 6. Beam test results for 300-micron UFSD sensors, and extrapolation to thin
sensors. For each thickness, the predictions obtained by the WF2 program for the
Landau noise and the jitter term are also shown.

N. Cartiglia et al. / Nuclear Instruments and Methods in Physics Research A ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 5
currently being investigated (Diamond, UFSD, APD, Silicon), and
each one is responding to specific experimental requests. The most
important points to achieve excellent time resolution are: (i) high
field to have saturated velocity and minimize signal distortion, (ii)
geometries as similar as possible to parallel plate capacitors, of-
fering uniform electric and weighting fields, (iii) high velocity
carriers, to have large dV dt/ , (iv) low capacitance, to minimize
noise and therefore jitter, and (v) small volumes, to minimize
leakage current and therefore Shot noise. The design of UFSD adds
two points: low gain (large signal, minimum excess noise, easier
segmentation, low power) and thin sensors (maximum dV dt/ , low
leakage current, small trapping).
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