Recent Advances in UFSD design

UFSD group INFN – Torino-Genova, Univ. of Turin, Univ. of Piemonte Orient, FBK-Trento, Univ. of Trento, Univ. of California at Santa Cruz.

Extensive collaborations with other groups and within the RD50 CERN collaboration

UFSD state-of-the art

After several years of intense R&D, ATLAS and CMS have (almost) finalized the designs of the silicon sensors of their timing layers.

Besides the number of pads (15x15 in ATLAS – 16x16 in CMS), the two designs are very similar:

- The sensors are 45-55 μ m thick <100> high-resistivity p-doped epitaxial, on a handle wafer of about 300 μ m
- Each pad is $1.3 \times 1.3 \text{ mm}^2 ==> \text{ position resolution} = 1.3 \text{ mm/sqrt}(12) = 375 \,\mu\text{m}$
- The total surface of the timing layers to be built is about 25 m²

> Within this talk, these designs define the UFSD state-of-the-art

The path to the present state-of-the art UFSD

_

UFSD for ATLAS and CMS

- Very well tested ٠
- will be used up to ~ 2 E15 n/cm2 Large no-gain area between pads ==> not suitable for 4D tracking ٠
- Gain ~ up to 40 when new ==> ur ٠
- Signal duration ~ 1 ns ٠
- Low noise ٠
- Rate ~ 50-100 MHz ٠
- Good production uniformity ٠

- Shortcomings:
- Intrinsic temporal resolution ~ 25-30 ps due to Landau noise
- Total material budget ~ 200-300 μ m of silicon •
- Rad hardness too low for the next generation of hadron colliders ٠
- Poor spatial resolution

4

Developments in UFSD designs

Improvements of the UFSD design will allow their use in many more applications

- 1) Very small no-gain distance ==> 4D tracking
- 2) Improved radiation resistance ==> inner layer of HL-LHC and beyond
- 3) Improved temporal resolution
- 4) Reduced material budget ==> future ee $\mu\mu$ experiments
- 5) Improved position resolution (AC-LGAD/RSD) ==> 4D tracking

1) Very small no-gain distance

Up to now, activities using UFSD are focused on "timing layers", i.e. a layer that provides the time to a track

4D trackers requires sensors with small pixels and almost 100% fill factors.

This can be obtained only with a re-design of the pad/gain isolation, decreasing substaintially the inter-pad (no-gain) distance.

Towards 100% fill factor: Trench Isolated LGAD

No-gain region ~ 50-80 μm
→ cannot use UFSDs for small pixels
Solution: use trenches for pad isolation
→ No-gain region ~ 5 - 10 μm

RD50-TI production

Interpad design	Interpad distance [µm]	
V1_1TR	2.7 <u>+</u> 0.2	
V2_1TR	6.5 <u>+</u> 0.2	
V3_1TR	7.9 ± 0.1	
V4_1TR	10.6 ± 0.2	
V2_2TR	8.9 ± 0.2	
V3_2TR	10.3 ± 0.1	

2) Improved radiation resistance

• Irradiation decreases the active doping of the gain implant

==> This effect is more damaging at low doping concentration

• Vbias compensates the loss of Efield

Can we design a more radiation resistant gain layer?

Shallow gain implant

Deep gain implant

Which geometry leads to better radiation resistance?

Gain layer: a parallel plate capacitor with high field

- The doping of the gain implant is equivalent to the charge on the plates of a capacitor.
- the bias adds additional E field

```
Gain: exp(field * distance)
```

 $G \propto e^{\alpha * d}$

```
For equal gain implant doping,
```

gain increases with implant depth

==> need to decrease the doping in deep implants

Shallow gain layers work at higher E field.

Multiplication length in shallow vs deep gain implants

$$G \propto e^{\alpha * d}, \alpha = \frac{1}{\lambda}$$

The compensation works better at lower Efield (higher λ derivative)

→ In deeper gain layer, Vbias has a stronger recovery capability

Improved radiation resistance: results

FBK UFSD32 production has sensors with gain implant at 2 different depths

	Shallow	Deep
Bias recovery	Weaker (larger bias increase needed)	Stronger (smaller bias increase needed)
Acceptor removal	Smaller (lower ''c'' coef)	Larger (laraer "c" coef)

Voltage increase to have a signal of 10 fC after 8E14 or 1.5E15 n/cm²

This plot shows the benefit of a deep implant: even with a higher "c", the radiation resistance is the same.

Need to find the optimal depth

Summary of UFSD temporal resolution

There are now hundreds of measurements on 45-55 μ m-thick UFSDs

→ Current sensor choice for the ATLAS and CMS timing layers

Improved temporal resolution: results

The FBK Exflu0 production (PI V. Sola) has manufactured sensors with 25 and 35 microns active thickness

The trend expected from simulation is confirmed

==> 15 - 20 ps resolution looks achievable with thinner sensors

4) Reduced material budget

The active thickness of UFSD sensor is rather small \sim 50 um.

In the present prototypes, the active part is attached to a thick "handle wafer"

There is a clear path leading to < 100 μ m material:

Present design: no material budget optimization

 Thinned handle wafer: 500 um → 10-20 um

‡ 25 μm

ASIC

~50 µm

- Thinned handle wafer:
 500 um → 10-20 um
- Thinned active area:
 50 um → 25 um
 50 ps → 25 ps

5) Improved Position precision

Innovative design: resistive read-out (AC-LGAD)

- The signal is formed on the n+ electrode ==> no signal on the AC pads
- The AC pads offer the smallest impedance to ground for the fast signal
- The signal discharges to ground

Laser study: position resolution as a function of pixel geometry

RSDs reach a spatial resolution that is about 5% of the inter-pad distance

 \rightarrow ~ 5 µm resolution with 150 µm pitch

RSDs have the "usual" UFSD temporal resolution of 30-40 ps

<u>Wrap-up</u>

- 1) Very small no-gain distance ==> real 4D tracking
 - TI-LGAD (and also AC-LGAD) seems to be able to solve the problem
- 2) Improved radiation resistance ==> inner layer of HL-LHC and behyond This is a long R&D plan, presently small incremental steps
- 3) Improved temporal resolution

Thin sensors deliver, as predicted by simulation, better precision

- **4) Reduced material budget** ==> future ee μμ experiment In the process of **thinning the handle wafers**
- 5) Improved position resolution ==> 4D tracking AC-LGAD (RSD): resolution about 5% of the pitch, can be as low as few microns

Acknowledgement

We kindly acknowledge the following funding agencies, collaborations:

- \succ RD50 collaboration
- ➢ INFN Gruppo V, UFSD and RSD projects
- ➢ INFN FBK agreement on sensor production (convenzione INFN-FBK)
- ➢ Horizon 2020, grant UFSD669529
- ➤ U.S. Department of Energy grant number DE-SC0010107
- > Dipartimenti di Eccellenza, Univ. of Torino (ex L. 232/2016, art. 1, cc. 314, 337)
- Ministero della Ricerca, Italia , PRIN 2017, progetto 2017L2XKTJ 4DinSiDe
- ➢ Ministero della Ricerca, Italia, FARE, R165xr8frt_fare

ż

Binary and analog read-out

