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Graph theory: basics

Graph G=(V,E)
• V=set of nodes/vertices i=1,…,N
• E=set of links/edges  (i,j)

Undirected edge: 

Directed edge: 

i j

i
j

Bidirectional 
communication/
interaction



Maximum number of edges

• Undirected: N(N-1)/2
• Directed: N(N-1)

Graph theory: basics

Complete graph:

(all to all interaction/communication)



Adjacency matrix

N nodes i=1,…,N

aij= 1 if (i,j)     E
0 if (i,j)  E

0 1 2 3

0 0 1 1 1

1 1 0 1 1

2 1 1 0 1

3 1 1 1 0

0

3

1

2

Î



Adjacency matrix

N nodes i=1,…,N

aij= 1 if (i,j)     E
0 if (i,j)  E

0 1 2 3

0 0 1 0 0

1 1 0 1 1

2 0 1 0 1

3 0 1 1 0

0

3

1

2

Symmetric
for undirected networks

Î



Adjacency matrix

N nodes i=1,…,N

aij= 1 if (i,j)     E
0 if (i,j)  E

0 1 2 3

0 0 1 0 1

1 0 0 0 0

2 0 1 0 0

3 0 1 1 0

0

3

1

2

Non symmetric
for directed networks

Î



Sparse graphs

Density of a graph D=|E|/(N(N-1)/2)

Number of edges

Maximal number of edges
D=

Sparse graph: D <<1 Sparse adjacency matrix

Representation: lists of neighbours of each node

l(i, V(i))

V(i)=neighbourhood of i



Paths
G=(V,E)

Path of length n = ordered collection of 

• n+1 vertices i0,i1,…,in    V

• n edges (i0,i1), (i1,i2)…,(in-1,in)    E

i2
i0 i1

i5

i4

i3

Cycle/loop = closed path (i0=in)

Î

Î



Trees

A tree is a graph without loops/cycles

• N nodes, N-1 links

• Maximal loopless 
graph

• Minimal connected 
graph



Paths and connectedness

G=(V,E) is connected if and only if there exists 
a path connecting any two nodes in G

is connected

•is not connected
•is formed by two components



Paths and connectedness

G=(V,E)=> distribution of components’ sizes

Giant component= component whose
size scales with the number of vertices N

Existence of a 
giant component

Macroscopic fraction of 
the graph is connected



Shortest paths

i

j

Shortest path between i and j: minimum number
of traversed edges

distance l(i,j)=minimum 
number of edges traversed 
on a path between i and j

Diameter of the graph= max(l(i,j))
Average shortest path= ij l(i,j)/(N(N-1)/2)

Complete graph: l(i,j)=1 for all i,j
“Small-world”: “small” diameter



Small-world 

N points, links with probability p:
static random graphs

short distances

(log N)



Small-world 

Average number of nodes 
within a distance l

Scientific collaborations

Internet



Centrality measures

How to quantify the importance of a node?

• Degree=number of neighbours=j aij

i

ki=5

(directed graphs: kin, kout)



Betweenness centrality
for each pair of nodes (l,m) in the graph, there are

lm shortest paths between l and m

i
lm shortest paths going through i

bi is the sum of  i
lm

 / lm over all pairs (l,m)

i
j

bi is large
bj is small

NB: similar quantity= load li= i
lm 

NB: generalization to edge betweenness centrality

path-based quantity



Structure of neighborhoods

C(i) =
# of links between 1,2,…n neighbors

k(k-1)/2

1

2

3

k

Clustering: My friends will know each other with high probability!
(typical example: social networks)

Clustering coefficient of a node

i



Statistical characterization
Degree distribution

•List of degrees k1,k2,…,kN Not very useful!

•Histogram:
        Nk= number of nodes with degree k
•Distribution:
        P(k)=Nk/N=probability that a randomly chosen
                            node has degree k
•Cumulative distribution:
        P>(k)=probability that a randomly chosen
                   node has degree at least k



Statistical characterization
Degree distribution

P(k)=Nk/N=probability that a randomly chosen
                            node has degree k

Average=< k > = i ki/N = k k P(k)=2|E|/N 

Fluctuations: < k2 >  - < k > 2 
< k2 > = i k2

i/N = k k2 P(k)
< kn > = k kn P(k)

Sparse graphs: < k > << N



Topological heterogeneity
Statistical analysis of centrality measures:

P(k)=Nk/N=probability that a randomly chosen
                            node has degree k
also: P(b), P(c)….

Two broad classes
•homogeneous networks: light tails
•heterogeneous networks: skewed, heavy tails



Topological heterogeneity
Statistical analysis of centrality measures

Broad degree 
distributions

Power-law tails
P(k) ~ k-

typically 2<  <3



Topological heterogeneity
Statistical analysis of centrality measures:

Poisson 
vs.
Power-law

log-scale

linear scale



Exp. vs. Scale-Free
Poisson distribution

Exponential 
Network

Power-law distribution

Scale-free 
Network



Consequences
Power-law tails
P(k) ~ k-

Average=< k> =   k P(k)dk
Fluctuations
< k2 > =    k2 P(k) dk ~ kc

3-

kc=cut-off due to finite-size
N  infinity  => diverging degree fluctuations
                     for  < 3

Level of heterogeneity:

∫

∫



Other heterogeneity levels

Betweenness
centrality



Degree Assortativity
Multipoint degree correlations

P(k): not enough to characterize a network

Large degree nodes tend to 
connect to large degree nodes
Ex: social networks

Large degree nodes tend to 
connect to small degree nodes
Ex: technological networks



Multipoint degree correlations

Practical measure of correlations:

average degree of nearest neighbors

i

k=3k=7

k=4
k=4

ki=4
knn,i=(3+4+4+7)/4=4.5



Statistical characterization
average degree of nearest neighbors

Correlation spectrum:

putting together nodes which
have the same degree

class of degree k



Typical correlations

• Assortative behaviour: growing knn(k)
Example: social networks

Large sites are connected with large sites

• Disassortative behaviour: decreasing knn(k)
Example: internet

Large sites connected with small sites, hierarchical 
structure





Clustering Spectrum

Average clustering coefficient
C=i C(i)/N



Clustering and correlations

non-trivial
structures



Weighted networks

Real world networks: links

• carry traffic (transport networks, Internet…)

• have different intensities (social networks…)

General description: weights

i jwij

aij: 0 or 1
wij: continuous variable



Weighted networks

Weights: on the links

Strength of a node:

                   si = j   V(i) wij

=>Naturally generalizes the degree to weighted networks

=>Quantifies for example the total traffic at a node

Î



Weighted clustering 
coefficient

si=16
ci

w=0.625 > ci

ki=4
ci=0.5

si=8
ci

w=0.25 < ci 

wij=1

wij=5

i i



Other heterogeneity levels

Weights

Strengths
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