Complex Networks Third Lecture

Plan of the lectures

Introduction
Networks: basic definitions
III. Models
IV. Community Detection

Usual random graphs: Erdös-Renyi model (1960)

N points, links with probability p: static random graphs

Average number of edges:
$<\mathrm{E}>=\mathrm{pN}(\mathrm{N}-1) / 2$

Average degree:
$<\mathrm{k}>=\mathrm{p}(\mathrm{N}-1)$
G
$\mathrm{p}=\mathrm{c} / \mathrm{N}$ to have
finite average degree

Erdös-Renyi model (1960)

$<\mathrm{k}><1$: many small subgraphs
$<\mathrm{k} \gg 1$: giant component + small subgraphs

Erdös-Renyi model (1960)

Probability to have a node of degree k
-connected to k vertices,

- not connected to the other $\mathrm{N}-\mathrm{k}$-1

$$
P(k)=C_{N-1}^{k} P^{k}(1-p)^{N-k-1}
$$

Large N , fixed $\mathrm{pN}=<\mathrm{k}>$: Poisson distribution

$$
P(k)=e^{-\langle k\rangle} \frac{\langle k\rangle^{k}}{k!}
$$

Exponential decay at large k

Erdös-Renyi model (1960)

Poisson degree distribution

$$
\text { Small clustering: }<\mathrm{C}>=\mathrm{p}=<\mathrm{k}>/ \mathrm{N}
$$

Short distances $\mathrm{l}=\log (\mathrm{N}) / \log (<\mathrm{k}>)$ (number of neighbors at distance d : $<\mathrm{k}>{ }^{\mathrm{d}}$)

"Real" Networks are different!

(1) The number of nodes (N) is NOT fixed.

Networks continuously expand by the addition
of new nodes:

Examples:

WWW: addition of new documents Citation: publication of new papers
(2) Attachment is NOT uniform.

A node is linked with figher probability to a node that already has a large number of links.
Examples:
WWW : new documents link to well known sites
Citation : well cited papers are more likely to be cited again

Microscopic mechanism: An example

(1) GROWTH : At every timestep we add a new node with m edges (connected to the nodes already present in the system).
(2) PREEFEREN(TIAL AITIACHGMENVIT:

The probability Π that a new node will be connected

$$
\Pi\left(k_{i}\right)=\frac{k_{i}}{\Sigma_{j} k_{j}}
$$ to node i depends on the connectivity k_{i} of that node

$$
P(k, t) \sim \frac{2 m^{2}}{k^{3}}
$$

Problem with directed graphs

Natural extension:

$$
P\left(k_{i}^{i n}\right)=\frac{k_{i}^{\text {in }}}{\sum_{j} k_{j}^{\text {in }}}
$$

What happens if $\mathrm{k}_{\mathrm{i}}^{\text {in }}=0$? $\quad P\left(k_{i}^{\text {in }}\right)=0$!

Nodes with zero indegree will never receive links! Bad!

Microscopic mechanism:

Preferential attachment with attractivity

(1) GROWIH : At every timestep we add a new node with m edges (connected to the nodes already present in the system).

(2) PREFEREN(IIAC AITACHMEXNI :

The probability Π that a new node will be connected to node i depends on the connectivity k_{i} of that node and a constant k_{0} (attractivity), with $-\mathrm{m}<k_{0}<\infty$

$$
P\left(k_{i}\right)=\frac{k_{i}+k_{0}}{\sum_{j}\left(k_{j}+k_{0}\right)}
$$

S. N. Dorogovtev, J. F. F. Mendes, A. N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000)

Degree distribution:

$$
P(k) \sim k^{-\left(3+k_{0} / m\right)}
$$

Extension to directed graphs:

$$
P\left(k_{i}^{\text {in }}\right)=\frac{k_{i}^{i n}+k_{0}}{\sum_{i}\left(k_{i}^{i n}+k_{0}\right)} \quad P\left(k^{\text {in }}\right) \sim\left(k^{i n}\right)^{-\left(2+k_{0} / m\right)}
$$

Problem of nodes with zero indegree solved!

Microscopic mechanism:

Copying model

Growing network:
a. Selection of a vertex
b. Introduction of a new vertex
c. The new vertex copies m links
 of the selected one
d. Each new link is kept with proba α, rewired at random with proba 1- α
J. M. Kleinberg, S. R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, Proc. Int. Conf. Combinatorics \& Computing, LNCS 1627, 1 (1999)

Microscopic mechanism:

Copying model

Probability for a vertex to receive a new link at time t :

- Due to random rewiring: $(1-\alpha) / t$
-Because it is neighbour of the selected vertex:

$$
\mathrm{k}_{\mathrm{in}} /(\mathrm{mt})
$$

effective preferential attachment, without a priori knowledge of degrees!

Microscopic mechanism:

Copying model

Degree distribution:

$$
\begin{gathered}
P\left(k_{i n}\right) \sim\left(k_{0}+k_{i n}\right)^{-\frac{2-\alpha}{1-\alpha}} \\
=>\text { Heavy-tails }
\end{gathered}
$$

=> model for the evolution of genetic networks

