

Meeting CMS Italia, Milano, 16-17th July 2009

Status and performances of Tracker and Muon system

Mauro Di Nardo, INFN Milano - University of Colorado Domenico Giordano, CERN (was University of Bari) Gianni Masetti, University of Bologna – INFN Roberto Castello, University of Torino –INFN – CERN PH-CMG

Outline

P5 activities during shutdown and commissioning 2009 DT/RPC status Tracker operation status

Detector performance from CRAFT 2008

Muon system and L1 trigger Tracker: Strip and Pixel calibration Tracking Alignment

> Towards LHC Summary

=presence of italian groups

P5 activities: commissioning and operations

- Repair activity
 - ✓ Chambers: ~100 channels recovered
 - On-detector electronics (minicrates) problems for 1.2%: fully recovered

□ HW/FW/SW upgrades

- Improve reliability: better control and monitoring of electronics
- Improve stability:
 - From 5 to 10 FED
 - New FW in the R/O to improve error handling)
- DSS implemented and tested

chamber extraction phase at P5

- Trigger HW
 - PHI Track Finder: 62 out of 66 needed boards working in P5 (20 being built, ready in August, but not a problem for CRAFT09)
 - ✓ ETA Track Finder: being commissioned now
- Status: STABLE during Global Runs, READY for LHC

A lot of work done on hardware:

Barrel and Forward ready (all Forward RPC in for the first time during MWGR_25)

- Grounding intervention:
 - Noise spikes observed with B field on during CRAFT08 (fluorescent and projector lamps)
 - Action done: Stars washers added; all shielding cables on detector shortened
- Gas system working smoothly since several months.
- Technical Trigger Unit (TTU):
 - Trigger board to select cosmic muons for calibration and alignment of other sub-detectors
 - Successfully tested for the first time during MWGR_25
 - TTU well synchronized

- Successful refurbishment of the Tracker Cooling plants + improved stability/monitoring
- Two SST cooling plants on the balconies were essentially rebuilt:
 - $\checkmark\,$ Fully assembled, tested and running C_6F_{14}
 - \checkmark leak rates close to zero for Pixel and SS1
 - \checkmark very low leak rate of SS2: \sim 250 g / 4-5 Kg per day when few lines 6 /1 over 90 are excluded

Since June 2009.

- Newly integrated TK (strips+pixel) DCS smoothly deployed
- Online DAQ deployments:
 - online diagnostic system handling DAQ error messages
 - redundancy and fast module masking improve FEC operation
 - \checkmark Reduced configuration time from 240 sec (in 2008) to 100 sec
 - FED spy channel under deployment
 - monitor event raw data frames via VME readout path, in parallel with standard acquisition of the global runs
 - SST firmware under revision
 - Consolidate the SST FEDs readout
 - Include the "APV emulator" veto to filter noisy events
- Future issues: tuning of parameters to operate in *deconvolution mode*
 - readout mode for beam operation
 - fine timing adjustments needed layer by layer during cosmic running

March 2009. FPIX extracted to perform maintenance

- Substitute the Silicone cooling tubes (rated up to 1.7 bar) with more robust ones (rated up to 10 bars)
- Repair the broken 6 % (but 0.5%, since it was considered too risky to be fixed;
 0.5-1% lost after re-insertion). As up to now: 98.5-99% of FPIX ok; 99% of BPIX ok
- Put redundant humidity sensors for better calibration
- Improve temperature stability analog electro-optical converters (by applying a Pyrolytic Graphite "cold-finger" connected to the cooling pipes)

Detector performance: low level performance

Calibration of the drift velocity inside chambers:

- same values for all chambers with BOFF
- Switching B field on, velocity recalibrated doesn't change so much
- MB1: inhomogeneous magnetic field (known effect)

100 200 300 400 500 600 700 800 900 1000

fitted resolution (micron)

Hit residuals:

- mean centered at zero for all stations
- resolution ~320 μm

Segment reconstruction efficiency in the $r-\phi$ plane >99%

(micron/ns)

Muon DT – Local Trigger

- □ Trigger Efficiency (one entry per chamber)
- Black: all quality trigger
- Red: only correlated trigger
- Blue: any MB4 trigger (not η information)

Reconstructed Local Track angle (from segments) vs the trigger angle primitive:
 good correlation

- DTTF efficiency overall good:
 - STA tracks used as tag
 - PHI TrackFinder tables missing

Reconstruction of track parameters:

✓ ϕ form STA tracks vs. ϕ form DTTF ✓ narrower distribution using only bottom tracks

- CRAFT08 contributed to access the excellent performance of the detector:
 - \checkmark High S/N: Strip ->25 (300 μm), higher than at TIF | Pixel ->25
 - Noise: low and stable during full operation period (e.g. few noisy pixels: 0.00038%)
- Calibration:

Lorentz Angle

- $\checkmark\,$ correct the drift of charge carriers due to the Lorentz force in the 3.8 T B field
- ✓ TIB θ_L = 3.9° | TOB θ_L = 5.0° | PXB θ_L = 24.6° | PXF θ_L = 4.1°

Gain equalization of signal

Pedestal measurement

Bad component identification

Tracker performance: resolution and efficiency

- Fully tested with CRAFT08 data
- **Resolution:**
 - evaluated using tracks passing through two sensors in the same layer
 - \checkmark Pixel σ_x =18 +/- 2 μ m| σ_y =29 +/- 3 μ m
 - \checkmark Strip σ_x =14 ÷ 39 +/-1 μ m
 - Results in agreement with MC simulation

overlap measurement

Strip Layer efficiency > 99%

when only active modules considered (red)

Operational fraction considering only problems identified in commissioning:

TIB 97.0% | TOB 98.5% | TEC+ 99.0% | TEC- 99.5%

- Recovered control ring in TIB L2 respect to 08 operation
- 45 modules off in TIB L3 following closure of the leaking cooling loop line
- unstable TOB control ring maybe recoverable, with special procedures
- But...Tracker reconstruction is robust against faults in the tracker operation:
 - List of problematic components is propagated to the track reconstruction:
 - DCS (HV/LV) and FED status
 - errors in FED buffer unpacking (event by event)
 - Offline Bad Component identification
- Map of faulty modules available for MC production

Handling of faults

Detector performance: high level performance

- Cosmic reconstruction widely tested on CRAFT08 data
- **Track reconstruction efficiency and parameter resolution with different methods:**
 - Tag&Probe method using STA muons : top leg of STA muon as tag for a reconstructed track in a Tracker cylinder
 - Tracker stand-alone method: seeding top (bottom) + full pattern recognition + bottom (top) hits removal+ final fit

Global muon resolution

on Half Cosmic Trac

- Global muon resolution measured with track-splitting method:
 - $\checkmark\,$ expected trend (~1% for low p_{T} tracks)
 - Tracker tracks still better than Global at high p_T : muon alignment not as in Tracker and no *muon* APE (Alignment position Errors)
- Resolution strongly affected by Tracker APE and B-field map used in the reconstruction

- Alignment at *module* level (stereo/rφ in DS layers): 100% in all subdets (94% in PXF)
- Results given with *combined* method = global (solve global correlation) + local (solve locally to match the track model)
- <u>D</u>istribution of the <u>Median of Residuals</u> (DMR) as estimator of remaining misalignment

	non-aligned	local meth.	global meth.	combined meth.
	μ m	μm	μ m	$\mu \mathbf{m}$
PXB(u')	328.7	3.3	7.6	3.1
PXB (v')	274.1	15.0	7.1	4.3
PXE(u')	389.0	30.5	24.5	13.8
PXE(v')	385.8	37.9	20.9	14.7
TIB (u')	712.2	15.1	5.2	3.2
TOB (u')	168.6	4.1	6.2	3.2
TID(u')	295.0	8.0	7.1	3.8
TEC (u')	216.9	11.5	30.3	7.9

TIB: 5 mm shift of pos/neg half-barrels along *z*, confirmed by optical survey

- Tracker geometry as a reference for aligning muon chambers
- □ Laser alignment in CSC and DT system (detection of 0T/3.8T movements)
 - \checkmark YE+1 z displacement of \sim 12 mm towards IP
 - CSC chamber local z shifts ~ 3mm, tilted 3.5 mrad
- **D**T alignment good agreement with survey measurements (less than 600 μ m)
- Not *everything* could be aligned precisely using cosmics: first beam halo in CSC

- Alignment affect momentum resolution
 - \checkmark Method: after muon alignment Tracker tracks extrapolated to 1^{st} muon station
- Comparison pT_{Trk} vs pT_{Glb} : global rotation of Tracker w.r.t. muon system of 350 μ rad
- Hint for a leftover misalignment:
 - \checkmark Not in Tracker: Curl (86 $\mu rad)$ not χ^2 invariant and geometry restored after alignment
 - \checkmark effect visible if 20< $p_{\rm T}$ < 100 GeV tracks are used for muon alignment

- Standard iterative tracking tested on cosmics with a Tag&Probe method (one muon as tag, search for the other): ε~96% (high |d0| tracks have tighter cuts in iterative tracking)
- K_0 and Λ reconstruction incorporated inside default tracking software
- minimal p_T for tracks was lowered to 75 MeV
- Activity on-going on reconstruction in *dense jets* and takle tracking with event *pile-up*

 Based on the residuals and parameter resolution a misalignment scenario StartUp09 was prepared (100 pb⁻¹ scenario for StripBarrel and 10 pb⁻¹ scenario in Pixels/StripEndcaps): last CRAFT alignment do even better!

- **Tracker and Muon system fully commissioned during shutdown period:**
 - ✓ effort of many people provided successful results
- Performances widely tested during CRAFT08:
 - design requirments fulfilled
 - development of a good handling of faults
- Tracking: reliable and continously in development
- Alignment: precision in the Tracker close to envisaged one, matching with Muon

Tracker and Muon system are in good shape for collisions!

CMS	CFT	09-008

• And while waiting for collisions, have a nice reading....

Tracker DPG: Alignment,Pixel performance, Strip performance Muon DPG: DTlocalReco, DTCalibration, DTLocalTrigger, RPCperformance, etc...

DR/	AFT
CMS CRAFT Pe	erformance Note
The content of this note is intended for	CMS internal use and distribution only
	2009/04/25 Archive Id: 1.1 Archive Date: 2009/04/12 20:52:4
The CMS Cosmic	Run at Four Tesla
CMS Coll CEI	laboration RN

BACKUP

Muon CSC performances

- All CSC chambers are delivering data
- No major problems observed during Global Runs.

• Good segment reconstruction efficiency in the r- ϕ plane (STA muon as *tag*)

 RPC efficiency: two methods used (DT trigger and Tag&Probe) giving similar results: good overall efficiency

CSC Track Finder performance

 Tracker track passing tagged in one endcap triggered by the other

- Backup: Tracker cooling plant (solution details)
- New tanks have been designed and put one floor up wrt the plants.
- Introduced additional instrumentation
 - Monitor the components of the cooling plants.
 - Measure heat exchangers' performance.
- Redesign all the final distribution lines (90 supply and 90 returns per plant)
- In parallel a full campaign of leak search at the Tracker and its bulkhead connections was launched.

- SST: CRAFT08 data contributed to access the excellent performance, that fulfill the design requirements
 - ✓ High S/N ratio 25 (300 µm), 31 (470 µm)
 - ✓ Noise stability
- PIXEL:
 - Pedestals are stored per pixel and gains per Chip double-clmn
 - pulse heigth: released cluster charge normalized to 300 μm (MC has ideal gain calibration)

Pixels: Pulse Height and Noise

Pulse heigth

- Released cluster charge is renormalized to 300 microns

- MC has IDEAL gain calibration (no smearing of gain and pedestal values)

- Time-walk and broken clusters are not simulated in MC (and not needed for collisions)

Noise					
	Glb mean Glb RMS		ChipRMS		
BPIX	85 e-	26 e-	22 e-		
FPIX	141 e-	35 e-	27 e-		
Threshold					
FPIX	2870 e-	200 e-	220 e-		
BPIX	3690 e-	410e- 88 e-			

- Large analysis program
 - Validation of new offline software with cosmic data
 - Extraction of new calibration and alignment constants for first collisions
- New operating temperature at 4° and data taking in APV Deconvolution mode
 ✓ Hardware tuning, Noise, Capacitive Couplings, Gains, Cluster Width, HIT Resolution, Lorentz Angle
- Needed Statistics
 - ✓ ~1/2M Ttracks: validation of previous measurements
 - ~4 M Ttracks: systematic effects study

CRAFT09 CMS/TK Program 09/07/13	week 1	week 2	week 3	week 4	
Tracker fully commissioned	CRAFT09	CRAFT09	CRAFT09	CRAFT09	
300Hz Trigger rate - 60% data taking efficiency					
Normalisation to Alignment Tracker Track selection (TT)					
250(1800)k TT per day(week) (1.6% of cosmic triggers)					
Validation of CRAFT09 commissioning in APV Peak	1.8M TT	1.8M TT			
(Tracker filter HLT as in CRAFT08)					
Calibrations with CRAFT09 in APV Deconvolution			1.8M TT	1.8M TT	
(Tracker filter HLT as in CRAFT08)					
SST time tuning for data taking in Deconvolution mode	Driving data taking time in Peak mode				
DQM, Pixels, Strips, Alignment, Track Reconstruction Offline					
Software Commissioning					
Pixels Calibration/validation of new commissioning/	>80k Track	>80k Tracks			
~ 1.5-3% of TT (PF/PB)	7M TT> 200(100)k Tracks BPIX(FPIX)				
Pixels Calibration/Lorentz Angle >80k Tracks		s			
~ 1.5-3% of TT (PF/PB)	7M TT> 200(100)k Tracks BPIX(FPIX)				
Simulation tuning/sensor thickness/	Independent of APV mode >2M TT				
Simulation tuning/cross talk/	1 run Peak few hours 1 run Dec few hours				
SST gains	>250 TT Peak >1/2M TT De		Dec		
SSTLA	Independent of APV mode >4M TT				
SST HIT efficiency	>500k TT F	Peak	>2M TT De	BC	
Alignment constants	Independent of APV mode >4M TT				
Laser monitoring during data taking	2000 evts Every 10'				
Special runs if enough operation time					
SST HV scan Gain-LA-Hit efficiency	3 additional days for 4 HV settings				
B field = 0/2T					
Simulation tuning/cross talk/ B=0T	1 special run per mode 2 x few hours				
SST Lorentz angle B=2T	1 additional day				
Alignment 0/2T (or 1 low B setting ?)	4 additional day per field value				
Offline Analyses					
Overlap study :	Priority to Dec 3000 module pairs for 4M TT				
Hit resolution Pt>20GeV, 6Hits, P(Chi2)>0.001					
Alignment performance					
Track parameters Pt>4GeV, 2 hits in PB ~1% of TT	>40k Tracks 7M TT> 70k Tracks				
Tracking efficiency Collision like selection ~1% of TT	>40k Tracks 7M TT> 70k Tracks				

Pixels: Efficiency (M.Lebourgeois, B.Mangano)

Denominator:

The track must pass through the innermost TIB layer both on the positive and negative y side Then, the track must be capable of being forward propagated from the positive y position in the TIB to a cylinder bounded by the third layer of Bpix

Equivalently, the track must be capable of being reverse propagated from the negative y position in the TIB to the same dz [cm] cylinder

Numerator:

Subset of denominator tracks that has at least one valid Bpix hit

Comment: this is not a measurement of the sensor efficiency, but is rather a result of several factors: tracking efficiency, alignment, detector performance, timing synchronization, etc...

20

□ <u>Alignment Parameter Error (APE)</u> properly tuned in order to have σ_{pull} ~1 in the normalized residual distribution

- Studies on the resulting Tracker geometry
- TIB: 5 mm shift of pos/neg half-barrels along z
 Two halves shifted apart
 - rwo naives sinited apart
 confirmed by optical survey
- Investigation of remaining possible 'weak' modes

APE checked also on track parameter (d_{xy} and d_z have strong pixel dependence)

- Evidence of the problem:
 - ✓ momentum scale comparison: STA vs TrackerTracks
 - \checkmark measurement of muon track bending from one station to the next
- □ Field map in Tracker region well-known (~0.1%) thanks to MTCC probes
- □ Field lines squeezed in r and z: in new model boundaries are *enlarged*
- φ-simmetry in CMSSW map (replicated in each of 12 sectors) but electric/cryogenic chimney (S4, S3) and feet (S9, S11): *corrections inside new map*
- Scaling factor computed on top of φ-simmetric map (vaues for L1/L2/L3) and applied to different wheels: corrections inside new map
- Better agreement in momentum scale STA tracks vs. TRK tracks

Evidence of the problem

1) measurement of muon track bending from one station to the next

- $\Delta \phi$ between two segments of consequent chambers measured $\Delta \phi_{\mu_+} \Delta \phi_{\mu_-} \propto \int B \cdot dI$
- to first order not affected by alignment
- significative difference between Data and MC