We investigate four-dimensional near-conformal dynamics by means of the large-charge limit. We first introduce and justify the formalism in which near-conformal invariance is insured by adding a dilaton and then determine the large-charge spectrum of the theory. The dilaton can also be viewed as the radial mode of the EFT. We calculate the two-point functions of charged operators. We discover that the mass of the dilaton, parametrising the near-breaking of conformal invariance, induces a novel term that is logarithmic in the charge. One can therefore employ the large-charge limit to explore near-conformal dynamics and determine dilaton-related properties.
Domenico Orlando, Susanne Reffert, Francesco Sannino
2019
We study the $O(4)$ Wilson–Fisher fixed point in $2+1$ dimensions in fixed large-charge sectors identified by products of two spin-$j$ representations $(j_L,j_R)$. Using effective field theory we derive a formula for the conformal dimensions $D(j_L, j_R)$ of the leading operator in terms of two constants, $c_{ 3 / 2}$ and $c_{ 1 / 2}$, when the sum $j_L + j_R$ is much larger than the difference $|j_L-j_R|$. We compute $D(j_L,j_R)$ when $j_L= j_R$ with Monte Carlo calculations in a discrete formulation of the $O(4)$ lattice field theory, and show excellent agreement with the predicted formula and estimate $c_{ 3 / 2}=1.068(4)$ and $c_{ 1 / 2}=0.083(3)$.
Debasish Banerjee, Shailesh Chandrasekharan, Domenico Orlando, Susanne Reffert
in PRL,
2019
We study some examples of Yang-Baxter deformations of the $AdS_5 \times S^5$ superstring with non-Abelian classical $r$-matrices which satisfy the homogeneous classical Yang-Baxter equation (CYBE). All of the resulting backgrounds satisfy the generalized type IIB supergravity equations. For some of them, we derive “T-dualized” backgrounds and show that these satisfy the usual type IIB supergravity equations. Remarkably, some of them are locally identical to undeformed $AdS_5 \times S^5$.
Domenico Orlando, Susanne Reffert, Jun-ichi Sakamoto, Kentaroh Yoshida
Journal of Physics A Highlight,
2016
We calculate the anomalous dimensions of operators with large global charge $J$ in certain strongly coupled conformal field theories in three dimensions, such as the $O(2)$ model and the supersymmetric fixed point with a single chiral superfield and a $W = \Phi^3$ superpotential. Working in a $1/J$ expansion, we find that the large-$J$ sector of both examples is controlled by a conformally invariant effective Lagrangian for a Goldstone boson of the global symmetry. For both these theories, we find that the lowest state with charge $J$ is always a scalar operator whose dimension is $ \Delta(J) = a J^{3 / 2} + b J^{1 / 2} - 0.093$, up to corrections that vanish at large $J$.
Simeon Hellerman, Domenico Orlando, Susanne Reffert, Masataka Watanabe
In JHEP,
2015