Measurement of the lifetime and of weak decay partial widths of mirror p-shell Λ-hypernuclei

International Workshop on Physics at the extended Hadron Experimental Facility of J-PARC

March 5-6, 2016, J-PARC, Tokai, Japan

Alessandro Feliciello I.N.F.N. - Sezione di Torino

further studies of p-shell Λ -hypernuclei

(in particular of the neutron-rich ones, e.g. $^{12}B_{\Lambda}$)

determination of:

The cultural heritage: $\Gamma \pi^-$ and $\Gamma \pi^0$

First determination of $\Gamma_p / \Gamma_{\Lambda}$ for 8 Hypernuclei

Со	mpletion	of decay	v pattern	for ⁵He _∧ a	nd ${}^{11}B_{\Lambda}$
	$^{5}_{\Lambda}$ He	$^{11}_{\Lambda}\mathbf{B}$	$^{12}_{\Lambda}{ m C}$	$^{12}_{\Lambda}\mathbf{C}$	
$\Gamma_T / \Gamma_\Lambda$	0.962±0.034	1.274±0.072	1.241±0.041	1.241±0.041	12
$\Gamma_{\pi^{-}}/\Gamma_{\Lambda}$	0.342±0.015	0.228±0.027	0.120 ± 0.014	0.123±0.015	28 et al., JKPS 59 (2011).
$\Gamma_{\pi^0}/\Gamma_{\Lambda}$	0.201±0.011	0.192±0.056	0.165 ± 0.008	0.165±0.008	H. Bhane
$\Gamma_p / \Gamma_\Lambda$	0.217±0.041	0.47±0.11	0.493±0.088	0.45±0.10	(2006)06230
$\Gamma_{2N}/\Gamma_{\Lambda}$	0.078±0.034	0.169±0.077	0.178±0.076	0.27±0.13	A. Kanget al., PRL 96 C
$\Gamma_n / \Gamma_\Lambda$	0.125±0.066	0.21±0.16	0.28±0.12	0.23±0.08	45.2
Γ_n / Γ_p	0.58±0.32	0.46±0.37	0.58±0.27	0.51±0.14 Physics Letters B 748 (2015)	36-88
Γ_n / Γ_p	0.508	0.502	0.418	Contents lists available at Sc Physics Letter www.elsevier.com/locate/	enceDirect S B
	$f \in K.$ Itonaga, T. $2N / \Gamma_p = 0.36 \pm 0$	Motoba, PTP 185 (2010) 252 $1.14^{+0.05}_{\text{stat}-0.04}_{\text{sys}}$	Determination of non-mesonic weak decay widths of ${}_{\Lambda}^{5}$ He and ${}_{\Lambda}^{11}$ B () Hypernuclei E. Botta ^{a,b} , T. Bressani ^{a,b} , S. Bufalino ^{a,b} , A. Feliciello ^{b,*} a Dipartimento di Fisica, Università di Torino, via P. Giuria 1, Torino, Italy bibNy Secione di Torino, via P. Giuria 1, Torino, Italy		

Charge dependence effects

▓

The rationale

* to perform new measurement by exploiting to a large extent preexisting facilities and infrastructures

to strength the international collaboration and the synergy with the J-PARC experimental Groups

Extended Hadron Hall

Features and physics scopes: K1.1

kaon (~1.1GeV/c) and pion (- ~1.2GeV/c) beams

- 1.9 m-long separators x 2
- 28 m length
- 300k $K^{-}(1.1)$ /spill and $K/p \sim 1:1$ with 5e+13 ppp

good resolution spectrometers: Beam and SKS

 $\boldsymbol{\diamond}$ studies on $\Lambda\text{-hypernuclei}$ and $\boldsymbol{\Sigma}N$ interaction

- γ -ray spectroscopy by the ($K^-, \pi^-\gamma$) reaction
- rightarrow weak decays: $(\pi^+, K^+) / (\pi^-, K^0)$
- $rightarrow \Sigma N$ scattering: $(K^{-}, \pi^{\pm}), (\pi^{\pm}, K^{+})$

courtesy of I. Takahashi

A possible apparatus concept layout

Concept design

final goal:

SKS Λ -hypernucleus MM resolution \leq 3 MeV (FWHM)

INFN

C target thickness: 0.7 gr/cm² along the beam: 1.0 gr/cm²

possible alternatives:

Expected rates (preliminary estimate)

23

Thank you!

どうも ありがとう