Measurement of the ³H_Λ lifetime and of weak decay partial widths of mirror p-shell Λ-hypernuclei

International Workshop on the project for the extended Hadron Experimental Facility of J-PARC

March 26-28, 2018, J-PARC, Tokai, Japan

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

physics goals

Physics motivations

8 a possible experimental program

- needed detectors
- necessary beam time

Precise, direct measurement of the ${}^{3}H_{\Lambda}$ (${}^{4}H_{\Lambda}$) lifetime (delayed time spectrum technique)

further studies of p-shell Λ-hypernuclei (in particular of the neutron-rich ones, e.g. ¹²B_Λ)

– determination of:

$$\mathbf{\bullet} \quad \Gamma_{\rm tot} \equiv \hbar/\tau$$

 Γ_{p}

* Γπ⁰ (possibly)

The naïve expectation

The theoretical predictions

Japan, March 26

Tokai.

J-PARC.

Feliciello / International Workshop on project for the extended Hadron Experimental Facility of J-PARC,

INFN

the physics case Part I

$^{3}H_{\Lambda}$ lifetime world data compilation

 $3^{rd} \tau({}^{3}H_{\Lambda})$ measurement "STAR

10

caveat: several existing measurements were arbitrarily ignored!

caveat: several existing measurements were arbitrarily ignored!

INFN

is something wrong in the new measurements?

(are we using the most suitable experimental technique?)

OR

is our understanding of the ${}^{3}H_{\Lambda}$ structure correct? ($B_{\Lambda}({}^{3}H_{\Lambda})$) is not as small as it is believed?)

A new τ (^{3,4}H) measurement @ challenging idea: K⁰ spectroscopy $\pi^{-} + {}^{3,4}\text{He} \rightarrow K^{0} + {}^{3,4}\text{He}$ asymmetric decay Letter of Intent for precise measurement of the lifetime of Hydrogen Hyperisotopes ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H <u>A. Feliciello / International Workshop on project</u> Michelangelo Agnello^{1,2}, Elena Botta^{2,3}, Tullio Bressani², Stefania Bufalino^{1,2}, Alessandro Feliciello², Tomofumi Nagae⁴, Toshiyuki Takahashi⁵, Hirokazu Tamura⁶ ¹ Politecnico di Torino, Dipartimento di Scienze Applicate e Tecnologia, Corso Duca degli Abruzzi 24. Torino Italy ² INFN - Sezione di Torino, Via P. Giuria 1, Torino Italy ³ Università di Torino, Dipartimento di Fisica, Via P. Giuria 1, Torino Italy ⁴ Department of Physics, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, Japan ⁵ Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research (KEK), Tsukuba 305-0801, Japan ⁶ Department of Physics, Tohoku University, Sendai 980-8578, Japan We are planning to propose an experiment to precisely measure the lifetimes of ${}^{3}_{4}$ H and ${}^{4}_{4}$ H using the 3,4 He $(\pi^-, K^0)^{3,4}_{\Lambda}$ H reaction at the K1.1 beamline by employing the SKS spectrometer and scintillation counters around the target. INFN

delayed time spectrum technique $\Rightarrow \tau(^{A}Z_{\Lambda})$

never exploited before!!!

 $\rightarrow \pi^+ + \pi^-$

 $(t_{decav} - t_{production})$

M. Agnello et al., NPA 954 (2016) 176.

@ $p_{\pi} \approx 1.0 \div 1.1 \, \text{GeV} / c$

direct measurement!!!

 σ_{MM} σ_{time} $\Delta\Omega$

INFN

 \leq 3 MeV (FWHM) \leq 100 ps (FWHM) ≈ 2 π sr

^σT(prongs) σ_{θ}

 \leq 3 MeV \leq 100 mrad

Expected rate for ${}^{4}H_{\Lambda}$ production

the physics case Part II

Looking for nuclear structure effects

$$\Gamma_{\pi^{-}} \begin{pmatrix} 12 \\ \Lambda \end{pmatrix} / \Gamma_{\pi^{-}} \begin{pmatrix} 12 \\ \Lambda \end{pmatrix} = ?$$
T. Motoba, NPA 547 (1992) 115c.
$$\approx 3$$
K. Itonaga, T. Motoba, Prog. Theor. Phys. Suppl. 185 (2010) 252.
$$= 2.9$$

$$\frac{\Gamma_{\pi^0}({}^{12}_{\Lambda}\mathbf{C})}{\Gamma_{\pi^-}({}^{12}_{\Lambda}\mathbf{C})} / \frac{\Gamma_{\pi^0}({}^{12}_{\Lambda}\mathbf{B})}{\Gamma_{\pi^-}({}^{12}_{\Lambda}\mathbf{B})} = ?$$

T. Motoba, NPA 547 (1992) 115c.

≈ 8

Γ_{π} : current experimental situation

31

Γ_p : current experimental situation

A consolidated method to extract Γ_{p}

INFN

I-PARC, Toka

INFN

Reaction kinematics

 π^+ -beam angle vs π^- -beam angle

 π^{-} momentum vs π^{+} momentum in SKS acceptance

kinematical features:

Expected rates (preliminary estimate)

A challenging project

ambitious physics program

experimental approach never attempted before:

 (π^{-}, K^{0}) reaction

Iong data taking campaign(s)
minimum 2-5 x 10¹³ π⁻ delivered on the target

test of the validity of the chosen strategy first attempt of missing-mass spectroscopy with the (π⁻, K⁰) reaction

Preduced experimental setup
* test of the adopted technical solutions
* save money

B reduced beam request

save time

pilot run but with a good physics output

Expected rate for ${}^{12}B_{\Lambda}$ production

utional Workshop

INFN

Preliminary performance study

Preliminary performance study

Preliminary performance study: PID

Rates and beam time summary

beam			exp. conf. detected YN		observables		
request (x 10 ¹³ π⁻)	target	thickness			τ	$\Gamma_{\pi-}$	Γ_{p}
1	¹² C	4 x 1 g/cm ²	1/4	1.5 x $10^{3} {}^{12}B_{\Lambda}$	possible	difficult	possible
- 1	¹² C	4 x 1 g/cm ²	1/2	3.0 x 10 ^{3 12} B _{Λ}	feasible	feasible	feasible
2	¹² C	4 x 1 g/cm ²	full	1.0 x 10 ⁴ $^{12}B_{\Lambda}$	OK	OK	ОК
5	L ⁴ He	1 g/cm ²	full	1.5 x 10 ⁴ $^{4}H_{\Lambda}$	OK	OK	-
5	L ³ He	1 g/cm ²	full	1.0 x 10 ⁴ $^{3}H_{\Lambda}$	OK	OK	-
1 x 10 ¹¹ π ⁺	¹² C	4 x 1 g/cm ²	1/2	$3.5 \times 10^{3} {}^{12}C_{\Lambda}$	-	-	feasible

delivered π	10 ⁷ π /spill (present)	1.5 x 10 ⁷ π /spill	10 ⁸ π /spill	10 ⁹ π /spill (HIHR)
1 x 10 ¹³	6.9 x 10 ¹ d	4.6 x 10 ¹ d	7 d	<1 d
2 x 10 ¹³	1.4 x 10 ² d	9.3 x 10 ¹ d	1.4 x 10 ¹ d	1.4 d
5 x 10 ¹³	3.5 x 10 ² d	2.3 x 10 ² d	3.5 x 10 ¹ d	3.5 d

Wrap-up

Example 2 Example 2 Solution Second Problem 1 Second Problem

direct measurement of the ³H_Λ and ⁴H_Λ lifetime
 detailed study of neutron-rich, *p*-shell
 Λ-hypernucleus (¹²B_Λ) decay process

ambitious and challenging experiment
 engineering run advisable

✓ test of both the strategy and the solution chosen
✓ added value !!! ☞ Good physics output

Thank you!

どうも ありがとう

