Study of Λ-hypernuclei weak decays at the K1.1 beam line

2nd International Workshop on the Extension Project for the J-PARC Hadron Experimental Facility, February 16-18, 2022

Outline

* physics motivations

- "a posteriori" (discovery tool)
 - MWD decay exploited as indirect spectroscopic analysis tool
- e intrinsic

a look to a further opportunity:

Extension Project for the J-PARC Hadron Experimental Facility

high-statistics (i.e. precise) and systematic (i.e. vs. A) study to determine the full pattern of the partial weak decay widths (in particular for p-shell neutron-rich Λ -hypernuclei)

pion decay spectroscopy

Mesonic weak decay (MWD)

Experimental observables

Addressed/addressable issues

- s-shell hypernuclei
 - ✓ Λ -eN potential
- *p*-shell hypernuclei
 - π distortion effect and MWD enhancement
 - ✓ π -nucleus optical potential
 - \checkmark J^{π} assignment \frown indirect spectroscopic tool

The status of the art about τ

The status of the art about τ

Alessandro Feliciello / 2nd International Workshop on the Extension Project for the J-PARC Hadron Experimental Facility, February 16-18, 2022

Γ_{π} and $\Gamma_{\pi 0}$: current experimental situation

Looking for nuclear structure effects

NFN

Non-mesonic weak decay (NMWD)

Experimental observables

- $\Gamma_{p'}(\Gamma_n)$
- $\clubsuit \ \Gamma_{\rm 2e\!N}$ and FSI contributions
- $\mathbf{\stackrel{}{\diamond}} \ \Gamma_{\mathsf{NM}} = \Gamma_n + \Gamma_p + \Gamma_{2 \in \mathcal{N}}$
- ✤ (single & coincidence) particle decay spectra

Addressed/addressable issues

- 4-baryon strangeness-changing weak interaction
- $\Delta I = 1/2$ rule validity from *s*-shell (⁴H_Λ) and heavier hypernuclei
- $\checkmark \Gamma_n / \Gamma_p$
- ✓ $\Gamma_{2 \circ N}$ determination
- ✓ search for $\Gamma_{2 N}$ experimental evidence

Γ_p: current experimental situation

A new experimental approach @ original idea: K⁰ spectroscopy never exploited before!! M. Agnello et al., NPA 954 (2016) 176. dσ/dΩ mb/sr $\pi^{-} + {}^{A}Z \rightarrow {}^{A}_{\Lambda}(Z-1) + K^{0}$ (a) $p_{\pi} \approx 1.0 \div 1.1 \, \text{GeV} / c$ μb/sr nb/sr $'^{+} + \pi^{-}$ @ J-PARC

advantages: charged particle only in the final state!

no need of large acceptance e.m. calorimeter

🖆 relative simple apparatus

cheap detectors

NHN

The (π-,K⁰) reaction

- well established reaction:
 - ! cross section experimentally known
 - from the isospin symmetric (π^+, K^+)
- experimental feasibility to be demonstrated (experimental potentiality showed by K. Miwa in the E40 experiment)
- **c** doorway to neutron-rich Λ-hypernuclei study
 - further investigation of the hypernuclear weak decay process
 - 4 H_A non-mesonic Γ_{p} to check the validity of the $\Delta I = \frac{1}{2}$ rule
 - Systematic and precise (≤ 5%) determination of the full pattern of the partial weak decay widths
- important investigation tool
 - for hydrogen Λ hyper-isotopes lifetime measurement

The experimental layout

beam lines in the extended area						
K1.1	K^{\pm}, π^{\pm}	< 1.2 GeV/c	$\sim 4 \times 10^5 K^-$ /spill (1.1)	mass separated		
K1.1BR	K^{\pm}, π^{\pm}	$0.7-0.8~{ m GeV}c$	$\sim 1.5 \times 10^5 \ K^-$ /spill	mass separated		
HIHR	π^{\pm}	< 2.0 GeV/c	$\sim 2 \times 10^8 \pi \text{ /spill (1.2)}$	mass separated		
			_	$\times 10$ better $\Delta p/p$		
K10	$K^{\pm}, \pi^{\pm}, \overline{p}$	< 10 GeV/c	$\sim 7 \times 10^6 K^-$ /spill	mass separated		
KL2	K_L	$\sim 5 \text{ GeV}/c$ in ave.	$\sim 4 \times 10^7 K_L$ /spill	5° extraction angle		
				optimized n/K_L		

Detecto	r minimum p	erformances re	equirements 26
$\checkmark \Delta_{T(prongs)}$	≤3 MeV (FWHM)	range detector	
$✓ σ_9$ ≤ 100 mrad		🖝 drift chambers,	cylindrical drift chamber?
$\checkmark \Delta_{MM}$	≤4 MeV (FWHM)		LGADS pixels, MAPS?
$\checkmark \Delta_{time}$	≤ 100 ps (rms)	plastic scintillators,	LGADs pixels?
🗸 Ω	≥ 2π sr		
		interest	
			-

magnetic spectrometer?
! desiderable but... impact on the target choice

know-how

www.shutterstock.com · 658310839

?

Very basic concept design

Event selection criteria

30

kinematical features:

Expected rates for ${}^{12}B_{\Lambda}$ **production**

Alessandro Feliciello / 2nd International Workshop on the Extension Project for the J-PARC Hadron Experimental Facility, February 16-18, 2022

Expected rate for ¹²C_A production

exciting physics program possible at the J-PARC K1.1 line by exploting the (π^-, K^0) reaction

40

 \otimes doorway to neutron rich Λ -hypernuclei investigation

- detailed study of neutron-rich, *p*-shell Λ -hypernucleus (${}^{12}B_{\Lambda}$) decay process
- Systematic and precise ($\leq 5\%$) determination of
 - the full pattern of the partial weak decay widths
 - 🖝 lifetimes

Thank you!

どうも ありがとう