The 13th Ir	nternational Conference of	on Hypernuclear and Strange Particle Physics
	H 2(YP)18
Toni	June 2 Norfolk V 325 N	24-29, 2018 Naterside Marriott E Main Street Iorfolk, VA
Production Production Production Production Bruncture o Nypernack Decays of 1 Bructure o	of hyperona and their baryonic lateraction of hyperonesis, including multi-strange syn departments, from forw-body systems to he demote hyperoxicit of multi-strange hyperoxicit of multi-strange hyperoxicit	
Internati	ional Advisory Committee	Scientific Program Committee
H.C. Bhang (S E. Botta (Torin T. Brossuni (To C. Curceanu (F D.H. Davis (Lo A. Failciello (To VN), Failcon	soui) T. Motoba (Claská) c) T. Nagen (Kyoto) rino) S.N. Nakamura (Choku) Frascat) H. Nourill (PONP) ndori) M. Oka (Rékyo I.T.) prino) E. Ohat (Valencia) kosovi J. Pochodział (Melnci	L Trag pierproviluite, Charl, R. McNason (Lub) R. Beluniever (ML), Co-Oardy D., J. Millerov (Rk) S. Ganctet (AN-J B.F. Globox (LAN-J B.F. Globox (LAN-J F. Marcater, FB) M. Marcharl, FB)
A. Gel (Jerusa) B.F. Glaeon (L. J. Heidonbeue K. Imal (JAEA/ T. Kishinnoto (C H. Lenako (Cla Y.G. Me (Shan	Anneros (Barcelona) A. Parros (Barcelona) containcen) r (Junor) L. Bohumacher (CNU) J-PARO) L. Tang (Sampton) Anaka, R. B.E. Timmarmana (Groningen) asser() T. Varnazaki (Tokyo) ginal, S.L. Zhu (Peking)	Organizing Committee University Uquara Targ Interpton(Lig, Onth) Parinted Bounder (XMU, Oc-Chair) Johna Canone Orthin Locone
b.d. Millener (f	s://www.jlab.o	rg/conferences/hyp2018/

Alessandro Feliciello

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

Outline

- physics cases
 - 1 the ${}^{3}H_{\Lambda}$ lifetime puzzle
 - Inter investigation of the hypernuclear weak decay process

a possible experimental program at J-PARC

- the experimental setup
- Litimate assessment of the lifetime of Λ-hypernuclei with a direct measurement (in particular for light systems)
- **systematic** and precise (\leq 5%) determination of the full pattern of the partial weak decay widths (in particular for *p*-shell neutron-rich Λ -hypernuclei)

the physics case Part I

to look for missing tiles

OR

to reorganise the pieces already at our disposal

Alessandro Feliciello / HYP 2018 - The 13th International Conference on Hypernuclear and Strange Particle Physics, Norfolk, VA, USA June 24-29, 2018 INFN

The theoretical predictions

- The 13th International Conference on Hypernuclear and Strange Particle Physics, Norfolk, VA, USA June 24-29, 2018

Alessandro Feliciello / HYP 2018

INFN

The theoretical predictions

2018

24-29,

- The 13th International Conference on Hypernuclear and Strange Particle Physics, Norfolk, VA, USA June

Alessandro Feliciello / HYP 2018

INFN

 $2^{nd} \tau(^{3}H_{\Lambda})$ measurement

caveat: several existing measurements were arbitrarily ignored!

caveat: several existing measurements were arbitrarily ignored!

INFN)

caveat: several existing measurements were arbitrarily ignored!

21

dN/d(*c*t) (cm⁻¹)

10

ALI-PREL-130174

see P. Braun-Munzinger @ HYP2015

is something wrong in the new measurements?

(are we using the most suitable experimental technique?)

OR

is our understanding of the ³H_A structure correct?

 $(B_{\Lambda}(^{3}H_{\Lambda}))$ is not as small as it is believed?)

A new exciting result?

INFN

the physics case Part II

Looking for nuclear structure effects

the apparatus Part I

delayed time spectrum technique $\Rightarrow \tau(^{A}Z_{\Lambda})$

 $(t_{decav} - t_{production})$

Experimental concept layout

(NFN)

6

π⁻: 0 < *p* < 133 MeV/c, 0° < 9 < 180°

Expected rate for ⁴**H**_{Λ} **production**

$$yield({}^{4}_{\Lambda}H) = N_{beam} \times \frac{N_{target}}{4} \times N_{A} \times \frac{d\sigma}{d\Omega} \times \Omega_{sp} \times \varepsilon_{sp} \times \varepsilon_{an}$$

$$N_{beam} = 5 \cdot 10^{13} \pi^{-} \qquad N_{target} = 1 \text{ g/cm}^{2}$$

$$\frac{d\sigma}{d\Omega} \approx 10 \,\mu\text{b/sr} \qquad \Omega_{sp} = 0.05 \text{ sr}$$

$$\varepsilon_{sp} = \text{BR}(K^{0} \to K_{s}^{0} \to \pi^{+}\pi^{-}) \times \varepsilon_{rc}(\pi^{+}\pi^{-}) \approx 0.01$$

$$\varepsilon_{an} = 0.5$$

$$yield({}^{4}_{\Lambda}H) \approx 1.5 \times 10^{4}$$

$$Q_{\pi} \approx 0.5$$

$$\Omega_{\pi} \approx 0.5$$

$$\Omega_{\pi} \approx 0.5$$

$$\Omega_{\pi} \approx 0.8$$

$$\Omega_{\pi} \approx 0.8$$

$$\Omega_{\pi} \approx 0.8$$

the apparatus Part II

 $600 \div 700 \text{ MeV/c} \rightarrow \text{few hundreds } \mu\text{m range}$

kinematical features:

Expected rates (preliminary estimate)

INFN

Rates and beam time summary

beam	beam and a second se			observables				
request (x 10 ¹³ π [–])	target	thickness	exp. conf.	detected YN	τ	$\Gamma_{\pi-}$	$\Gamma_{\pi 0}$	Γ_{p}
1	¹² C	4 x 1 g/cm ²	1/4	1.5 x 10 ^{3 12} B_{Λ}	possible	difficult	-	possible
1	¹² C	4 x 1 g/cm ²	1/2	$3.0 \times 10^{3} {}^{12}B_{\Lambda}$	feasible	feasible	-	feasible
- 2	¹² C	4 x 1 g/cm ²	full	1.0 x 10 ⁴ $^{12}B_{\Lambda}$	ОК	ОК	ОК	ОК
- 5	L ⁴He	1 g/cm ²	full	1.5 x 10 ⁴ ${}^{4}\text{H}_{\Lambda}$	ОК	ОК	-	-
- 5	L ³ He	1 g/cm ²	full	1.0 x 10 ⁴ ${}^{4}\text{H}_{\Lambda}$	ОК	ОК	-	-
2 x 10 ¹¹ π ⁺	¹² C	4 x 1 g/cm ²	full	8.0 x $10^{3} {}^{12}C_{\Lambda}$	-	-	-	feasible

delivered π	10 ⁷ π /spill (present)	1.5 x 10 ⁷ π /spill	10 ⁸ π /spill	10 ⁹ π /spill (HIHR)
1 x 10 ¹³	6.9 x 10 ¹ d	4.6 x 10 ¹ d	7 d	<1 d
2 x 10 ¹³	1.4 x 10 ² d	9.3 x 10 ¹ d	1.4 x 10 ¹ d	1.4 d
5 x 10 ¹³	3.5 x 10 ² d	2.3 x 10 ² d	3.5 x 10 ¹ d	3.5 d

(

Preliminary performance study

Alessandro Feliciello / HYP 2018

Preliminary performance study: PID

Disagreement among experimental results

- is there any problem related to the different experimental techniques?
- Disagreement among experimental results and theoretical predictions:
 - are we perhaps biased by a strong prejudice?
- Need for a new direct measurement of the lifetime of light Λ-hypernuclei
- Sood opportunity to further investigate the Λ-hypernuclei weak decay process