High resolution spectroscopy of hypernuclei with y-ray detectors

Alessandro Feliciello I.N.F.N. - Sezione di Torino

Discovery potential of the strangeness nuclear physics

Need of sub-MeV resolution apparatuses γ-ray spectroscopy

Ideas for new experimental apparatuses FINUDA2 @ LNF/DATE2 PANDA @ GSI/HESR

Observed AA-hypernuclei

• 1963: Danysz et al. $\frac{10}{\Lambda\Lambda}Be$ (emulsion)

 $^{10}_{\Lambda\Lambda}Be$

- 1966: Prowse
- 1991: KEK-E176
- 2001: BNL-E906 ⁴_{лл} H
- 2001: KEK-E373 ⁶_{AA}He
- 2001: KEK-E373

- $^{6}_{\Lambda\Lambda}$ He (emulsion, Dalitz criticises the interpretation)
- $^{13}_{\Lambda\Lambda}B$ (or $^{10}_{\Lambda\Lambda}Be$, emulsion counter hybrid experiment)

$$\pi^{-}$$

Progress in detection technique

emulsion based experiments provide one of the most powerful techniques to measure masses and binding energies, but they are not suitable for systematic studies which require large statistics

How to identify a AA-hypernucleus

sequential pionic decay ${}^{A}_{AA}Z \rightarrow {}^{A'}_{A}Z' \rightarrow {}^{A''}Z''$ ллA π ΛВ π-

Expected π^- momentum spectrum

The status of the art

Hypernucleus	$B_{\Lambda\Lambda}$ [MeV]	$\Delta B_{\Lambda\Lambda}$ [MeV]	$(\overrightarrow{B}, (\overrightarrow{A}, \overrightarrow{Z}) = B, (\overrightarrow{A}, \overrightarrow{Z}) + B, (\overrightarrow{A}, \overrightarrow{Z}))$
$^{10}_{\Lambda\Lambda}Be$	17.7 ± 0.4	4.3 ± 0.4	$- AA(AA^{-}) - A(AA^{-}) - A(A^{-}) - A(A^{-})$
$_{\Lambda\Lambda}^{6}He$	10.9 ± 0.5	4.7 ± 0.6	$\mathbb{Z}^{\Delta B_{AA}(AA}Z) = B_{A}(AAZ) - 2B_{A}(AAZ)$
	27.6 ± 0.7	4.8 ± 0.7	
$\frac{10}{8}$ $\frac{10}{\Lambda\Lambda}$ Be	8.5 ± 0.7	-4.9 ± 0.7 !	
$^{6}_{\Lambda\Lambda}He$	7.25 ± 0.19 ^{+0.18}	1.01 ± 0.20 ^{+0.18}	
$^{10}_{\Lambda\Lambda} Be$	12.33 ^{+0.35} _{-0.21}		$\mathbf{B}_{\mathbf{\Lambda}}$ $\mathbf{B}_{\mathbf{\Lambda}}$

one can not to interpret $\Delta B_{\Lambda\Lambda}$ as $\Lambda\Lambda$ binding energy because of:

- dynamical change of the core nucleus
- NA spin-spin interaction for non-zero spin of core
- possible excited states

if $\Lambda\Lambda$ - or intermediate Λ -hypernuclei are produced in excited states:

- Q-value is difficult to extract (especially for heavy nuclei)
- nuclear fragments are difficult to identify with usual emulsion technique

new concept required!

decay properties:

?total decay rate

?lifetime measurements

? non-mesonic weak decay modes

? influence of the H-like structure

S = - 2 systems and H-dibaryon states

 $B_{\Lambda\Lambda} = 24 \text{ MeV}$

 $\begin{array}{c} \textit{H} \text{ particle formation can be revealed by} \\ \text{a modification of the energy levels of } \Lambda\Lambda\text{-hypernuclei} \end{array}$

@ \mathcal{L} = 10³⁴ cm⁻² s⁻¹ FINUDA can observe ~ 1.6 × 10⁴ ev/h from YN g.s.

higher beam intensity (100 ×)
 fast cycling synchrotrons

❷ higher beam energy (15 ×)

 igher beam quality
 stochastic and electron cooling
 bunch compression (50 ns)

In high parallelism in operation

AA-hypernucleus production @ GSI

experiment	reaction	device	beam/ target	status
BNL- <i>AGS</i> E885	$(\Xi^{-},^{12}C) \rightarrow {}_{\wedge\wedge}{}^{12}B + n$	neutron detector arrays	Æ beam, diamond target	20000 <mark>stopped</mark> Ξ⁻
BNL-AGS E906	2π decays	Cylindrical Detector System	K beam line	few tens 2π decays of $_{\Lambda\Lambda}{}^4H$
KEK-PS E373	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	emulsion	(₭⁺,₭⁺)	several hundreds stopped Ξ ⁻
facility	reaction	device	beam / target	Captured Ξ⁻ / day
JPARC	(, 𝑘², 𝑘²) Ξ	spectrometer, $\Delta \Omega$ = 30 msr	8·10 ⁶ ∕s 5 cm ¹² C	< 7000
cold anti- protons	$ \underline{p} \overline{p} \to K^* \overline{K}^* \\ K^* N \to \Xi K $	vertex detector	10° stopped p/s	2000
GSI-HESR	$p \bar{p} \rightarrow \Xi \bar{\Xi}$	vertex detector + γ-spectrometer	£ = 2·10 ³² , thin target, production vertex ≠ decay vertex	~ 3000 ~ 300000 KK trigger (incl. trigger)

The PANDA detector

Ge array for hypernuclei detection

- + solid state micro-tracker (diamond or silicon)
 - > compact: thickness ~ 3 cm
 - > high rate capability
 - > high resolution
- + capillar (2D) or pixel (3D) detector
- + position sensitive Ge detector (VEGA or AGATA like)
 - high rate capability

Technological challenges

- high photopeak efficiency (ε_{ph} ≥ 0.3)
 good angular resolution in order to increase
 the Doppler correction capability (up to v/c ≈ 0.5)
- high event rate capability
- fast background rejection
 - operation into high magnetic fields

Technological challenges

operation in presence of huge hadronic background

- developing of readout schemes and tracking algorithms
 to perform high resolution γ-spectroscopy
 notwithstanding high particle fluxes
 - detector response characterization
 - detailed background studies
- feasibility study for a fast reset circuit based on feedback from charged particle veto detector surrounding the Ge detectors
- operation into high magnetic field
 - developing of new techniques and procedures to make
 Ge detectors nearly insensitive to the perturbation

- The fifty-year-old field of strangeness nuclear physics is still alive and has a great discovery potential
- Ge γ-ray detectors are ideal tools to complement "traditional" magnetic spectrometer
- By exploiting the potentialities of the new GSI and Jparc facilities, a large number of AA-hypernuclei will be produced, allowing a significative step forward in multi-strange system knowledge
- We could successfully celebrate it with a long series of fundamental questions solved