

Alessandro Feliciello I.N.F.N. - Sezione di Torino

The current status of experimental hypernuclear physics

experimental results:
search for neutron-rich hypernuclei
antimatter hypernuclei
2 N induced hypernucleus weak decay

ptember 9 – 13, 2013

A look to the (next) future: waiting for J-PARC

Spring 2013 scenario

🞉 First hypernuclei @ J-PARC

5

Fall 2013 scenario

The status of the art (as of 2011)

CEE C

Kraków, Poland, September 9 – 13, 2013

22nd European Conference on Few-Body Problems in Physics

Alessandro Feliciello

INFN

Kinematics and binding energy

22

Charge symmetry breaking (?)

Expanding the horizon...

Hypernuclei in HI collisions

EFB 2

on Few-Body Problems in Physics

 22^{nd}

Alessandro Feliciello

EFBZ

INFN

 $\sim 23 \times 10^6$ events

33

New ³H_Λ τ measurement

'STAR

- importance of the effect: ~20-25% of the total NMWD width
- several experimental evidences, but indirect

Kraków, Poland, September 9 – 13, 2013

ms in Physics

Alessandro Feliciello

INFN

Ref.	Γ_2/Γ_A	Γ_2/Γ_{NM}	Notes	within
BNL-E788 [47]		≤ 0.24	$^{4}_{\Lambda}$ He, <i>n</i> and <i>p</i> spectra	asistent wirds
KEK-E508 [48]	0.27 ± 0.13	0.29 ± 0.13	$^{12}_{\Lambda}$ C, nn and np spectra	cons. large en
FINUDA [8]		0.24 ± 0.10	A = 5-16, p spectra	10.
FINUDA [9]		+0.03 sys $0.21 \pm 0.07 \text{ stat} -0.02 \text{ sys}$	A = 5-16, np spectra	
		E. Botta, T. Bressan	1, G. Garbarino, <i>EPJA</i> 48 (2012) 21	ne Sou
	"smoking	No. 1		

* experimental hardness: 3 nucleons emitted from Λ -hypernucleus g.s. 4-fold coincidence measurement (π^- , p, n, n)

2 *M* **induced decay exp. evidence**

ST

triple coincidence: (n + n + p) events

exclusive $\Lambda np \rightarrow nnp$ decay event:

$$^{7}_{\Lambda}Li \rightarrow ^{4}He + p + n + n$$

p_{π-}

p_{miss}

=

E_{tot}

EFB 22

Kraków, Poland, September 9 – 13, 2013

TOFONE

276.9 ± 1.2 MeV/c

178 ± 23 MeV

217 ± 44 MeV/c

INFN

no n-n or p/n scattering

2 *M* induced decay exp. evidence

triple coincidence: (n + n + p) events

exclusive $\Lambda np \rightarrow nnp$ decay event:

			\leq
⁹ _л Ве—	\rightarrow ³ <i>He</i> + ³ <i>H</i> + <i>p</i>) + I	$n+n$ cut on E_p released
	p _{π-} P _{miss} E _{tot} MM		286.7 ± 1.2 MeV/c 253 ± 18 MeV/c 123.5 ± 4.9 MeV 5617.3 ± 5.0 MeV/c ²
A	E(n1) E(n2) E(p)	= = =	20.2 ± 2.5 MeV 31.5 ± 4.2 MeV 71.77 ± 0.80 MeV
	ծ(n1 n2) ծ(n1 p) ծ(n2 p)	=	133.6 °± 7.5° 128.5°± 5.5° 95.4°± 3.6°

no n-n or p/n scattering

$^{9}_{\Lambda}$ Be	MM (MeV/ c^2)
⁶ Li	5601.5
${}^{5}Li + n$	5607.2
4 He + d	5603.0
3 He + 3 H	5617.3

INFN

E ST

Kraków, Poland, September 9 – 13, 2013

Alessandro Feliciello

INFN

a good wealth of interesting and sometime unexpected hypernuclear physics results has been recently produced

we are now looking forward for new and exciting world class results

