Hadron Physics induced with Hadron Beams George Washington University July 23 - 25, 2001, Washington DC

Physics with n's: first evidence of an NN resonant state

Alessandro Feliciello I.N.F.N. - Sezione di Torino

Outlook

- * NN system
- * *np* vs. *pp* interactions
- * *np* vs. *pd* interactions
- *ns* beams
- the OBELIX n's "factory"
- *n*'s physics
 - meson spectroscopy
 - *np* cross section
 - *n*-nucleus cross section

NN interaction: why?

historical

• 60's: description of ordinary meson spectrum $(\pi, \rho, ...)$

80's - 90's: search for exotic configurations

- multiquark (q²q²)
- glueball (gg or ggg)
- hybrids (\overline{qqq})
- other non $q\bar{q}$ mesons

NN interaction: why?

nuclear physics

- understanding of nuclear forces:
 - clearing up the rôle of the G-parity rule $(\overline{pp} \leftrightarrow pp \text{ and } \overline{np} \leftrightarrow np)$
 - search for NN bound states or resonances
 (NN potential deeper than the NN one)
 - study of the isospin dependence of the NN interaction (comparison of pp with pn or np data)
 - determination of the annihilation strength dependence on some channels (fit to the scattering and annihilation data)

n's interaction: why?

▲ scarce data on low energy *np* interaction ▲ complementary/alternative to *pp* interaction

but

technically difficult low n production rate

The pp system

The np system

o[mb] $\sigma_{\text{ann}}(\bar{n}\,p)\;(\text{OBELIX})$ $\sigma_{ann}(\bar{n} p)$ (T. Armstrong et al.) $\sigma_{ann}(\bar{n}p)$ (G.S. Mutchler et al.) n momentum [MeV/c]

np vs. pp (advantages)

- pure I = 1 state:
 - reduced number of initial states involved
- the percentages of s- and pwaves can be selected by choosing the n momentum
- Absence of Coulomb interaction:
 - no distortion of the σ trend in the low momentum region $(\sigma \propto 1/v)$

mixture of the I = 0 and I = 1 amplitudes

np vs. pp (advantages)

- no energy loss in the target:
 - possibility of precisely reconstructing the energy at which the interaction occurs
 - only one target
 - the target thickness can be increased to obtain higher counting rates

target thickness is a "function" of p momentum

np vs. pp (advantages)

- At least one prong in the final state:
 - good opportunity for trigger
 - easier detection
 - selection of

* all neutral annihilations (see Crystal Barrel)

np vs. pd (advantages)

- better energy and momentum resolution:
 - no kinematical corrections due to the presence of the spectator proton

np vs. pp (drawbacks)

- Iow intensity:
 - $30 \div 50 \times 10^{-6} \ \overline{n}/\overline{p}$
- poor energy definition
- in flight annihilations:
 - beam divergence
 - annihilation vertex delocalization

- * e.g. LEAR \overline{p} beam:
 - ∆p/p ~ 10⁻⁴
 - $I \sim 10^7 \, p/s$

1983 - 1996

n's production

beam dumping

- ✤ AGS/BNL (1981):
 - $10 < p_p < 30 \, GeV/c$
 - $I \sim 10^{-8} \overline{n}/p \text{ GeV}/c \text{ sr}$
 - $0.3 < p_{\overline{n}} < 1 \, GeV/c$
 - no physics output:
 - poor beam quality
 - *n* high contamination level

$\overline{pp} \rightarrow \overline{nn}$ charge exchange

- * AGS/BNL (1987):
 - target: CH₂
 - 2% of $\overline{p} \to \overline{n}$
 - 100 < p_n < 500 MeV/c
 - physics output:
 - $\sigma_{tot}(\overline{np})$ and $\sigma_{ann}(\overline{np})$
- * LEAR/CERN (1988):
 - target: *LH*₂ (2-body kinematics!)
 - $I \sim 10^{-4} \overline{n}/\overline{p}$
 - 50 < p_n < 300 MeV/c
 - physics output:
 - $\sigma_{tot}(\bar{n}p)$ and $\sigma_{ann}(\bar{n}Fe)$

The n tagging technique

n's momentum evaluation

algorithm based on t.o.f. measurement:

n's momentum spectrum

n's beam spot on the target

flux*: $(13 \pm 0.5) \times 10^{-6} \ \overline{n/p}$

*untagged \overline{n} beam \Rightarrow no direct flux measurement!!!

HADRON 91

(1359 \pm 17) MeV/ c^2 (425 \pm 30) MeV/ c^2

 $\pi^+ \pi^- \pi^+ \pi^-$ system invariant mass [GeV/c²]

 $(1664 \pm 1) \text{ MeV}/c^2$ (53 ± 2) MeV/c²

nuclear physics

np annihilation cross section
 np total cross section
 anomaly in the elastic *np* cross section
 n-nucleus annihilation cross section

n-nucleus annihilation cross section

23

A and p dependencies

n-nucleus data

N-nucleus data

Annihilation products

K/π ~ 3%: about the same than np
no enhancement of strangeness production with A
very slight decreasing with A (energy loss?)

- both p and d production increases with A (and saturate)
- d/p ~ 3-4% (average values in literature ~ 10-15%: different reconstruction efficiency?)

np annihilation cross section

$$\sigma_{ann}^{i} = \frac{1}{\rho N_{A} \Delta z} \frac{1}{\varepsilon \varepsilon_{trig}} \frac{N_{ann}^{i} (1 - \gamma^{i})}{N_{\overline{n}}^{i}}$$

Nucl. Phys. B 56A (1997) 227]

$$\sigma_{ann} = \frac{4\pi}{k^2} \sum_{l} (2l+1)(Imf_l - |f_l|^2)$$

$$f_l = \frac{1}{\cot \delta_l - i}$$

$$k \cot \delta_0 = \frac{1}{a_1} + \frac{1}{2}r_1k^2$$

$$k^{3} \cot \delta_{1} = \frac{1}{b_{1}} - \frac{3}{2} \frac{1}{R_{1}} k^{2}$$

$$\sigma_{ann} = \frac{4\pi}{k^2} \sum_{l} (2l+1)(Imf_l - |f_l|^2)$$

$$f_l = \frac{1}{\cot \delta_l - i}$$

$$k \cot \delta_0 = \frac{1}{a_1} + \frac{1}{2}r_1k^2$$

$$k^{3} \cot \delta_{1} = \frac{1}{b_{1}} - \frac{3}{2} \frac{1}{R_{1}} k^{2}$$

 $k^{5} \cot \delta_{2} = \frac{1}{c_{1}} + \frac{5}{2} \frac{1}{\rho_{1}^{3}} k^{2}$

The transmission technique

 $\Delta N_{ann}(p_{\overline{n}}, z) = \sigma_{ann}(p_{\overline{n}})I_{\overline{n}}(p_{\overline{n}}, z)\rho N_{A}\Delta z$

 $I_{\overline{n}}(p_{\overline{n}},z) = I_{\overline{n}}(p_{\overline{n}},0)e^{-\sigma_{tot}\rho N_{A}z}$

 $\frac{\Delta N_{ann}(p_{\overline{n}},z)}{\Delta z} = I_{\overline{n}}(p_{\overline{n}},0)\sigma_{ann}(p_{\overline{n}})\rho N_{A}e^{-\sigma_{tot}\rho N_{A}z}$

The transmission technique

The transmission technique

np total cross section

 $70 < p_{\overline{n}} < 90 \text{ MeV}/c$

- no systematic errors (practically)
- statistical errors significantly reduced

$$\sigma_{tot} = \frac{4\pi}{k^2} \sum_{l} (2l+1) Im f_l$$

$$f_l = \frac{1}{\cot \delta_l - i}$$

$$k \cot \delta_0 = \frac{1}{a_1} + \frac{1}{2}r_1 k^2$$

$$k^{3} \cot \delta_{1} = \frac{1}{b_{1}} - \frac{3}{2} \frac{1}{R_{1}} k^{2}$$

$$\sigma_{tot} = \frac{4\pi}{k^2} \sum_{l} (2l+1) Im f_l$$

$$f_l = \frac{1}{\cot \delta_l - i}$$

$$k \cot \delta_0 = \frac{1}{a_1} + \frac{1}{2}r_1k^2$$

$$k^{3} \cot \delta_{1} = \frac{1}{b_{1}} - \frac{3}{2} \frac{1}{R_{1}} k^{2}$$

 $k^{5} \cot \delta_{2} = \frac{1}{c_{1}} + \frac{5}{2} \frac{1}{\rho_{1}^{3}} k^{2}$

Anomalous p-wave contribution

Different binning

[*Phys. Lett.* **B** 475 (2000) 378]

The ρ parameter

Which origin for such anomalies?

- ★ threshold of the $pp \rightarrow nn$ channel
 (p^{lab}_p = 98 MeV/c)
- s-wave dominance, in the frame of the coupled channel approach
- quasi-nuclear bound states near threshold

measurement of $d\sigma/d\Omega$ (relative importance of s- and p-wave contributions) essential to discriminate among different hypotheses

 $M_{x} = (1.87 \pm 0.01) GeV$ $\Gamma_{x} = (10 \pm 5) MeV$

The threshold region

100 1000 otot(np) [mb] (OBELIX) mh) [nb] (FENICE) 90 900 n threshold np threshold 80 800 fit to $\sigma(e^+e^- \rightarrow mh)$ 70 700 60 600 50 500 \uparrow 40 400 σ(e⁺ e⁻ 30 300 20 200 10 100 Н 0 0 1.84 1.85 1.86 1.87 1.88 1.9 1.91 1.92 1.89 E_{c.m.} [GeV]

 $\sigma(e^+e^- \rightarrow mh)$ [nb] (world average)

Photoproduction experiments

Summary

ns validated as projectile for meson spectroscopy

- ✓ $\sigma_{ann}(\overline{np})$ and $\sigma_{tot}(\overline{np})$ measured for the first time:
 - down to 50 MeV/c
 - e with high statistics
- evident anomalous behaviour

of $\sigma_{tot}(\overline{np})$ ($\rightarrow \sigma_{el}(\overline{np})$) near threshold

indication for a structure below 100 MeV/c in the elastic channel???