Recent results and future programs on nucleon and nuclear structure in Frascati

> Hadron Structure '96 Stará Lesná Slovak Republic February 12 -16, 1996

... before FENICE

Theoretical expectations

 $\int OV \qquad r = \frac{\sigma(e^+e^- \to n\overline{n})}{\sigma(e^+e^- \to p\overline{p})}$

threshold $< q^2 < 10 \text{ GeV}^2$

QCD sum rules	(Brodsky 72)	$r \sim \frac{q_d^2}{r^2} \sim 0.25$
baryon = lead. quark	(Chernjak 83)	<i>q</i> _u
+ diquark	(Hyer 92)	r ~ 0.06
		@ q ² = 25 GeV ²

EVDM:

ρ + ω	(Cabibbo 61)	r ~ 14
Veneziano Rec.	(Körner 77)	r ~ 2
PDG Rec.	(Voci 82)	r ~ 100
+ Unit. Ampl.	(Dubnicka 88)	r ~ 25
	(Dubnicka 92)	r < 1

• + _N strong	(Dalkarov 92)	
final state	(Meshcheryakov 93)	<i>r</i> ≤ 1
interaction		@ threshold

U spin invariance (Biagini 91) r >1

@ $q^2 \sim 4 - 5 \text{ GeV}^2$

A. Feliciello / I.N.F.N. - Sezione di Torino

The FENICE experiment

- ★ Cagliari University and INFN
- ★ Ferrara University and INFN
- ★ INFN National Laboratories of Frascati
- ★ Padova University and INFN
- ★ Roma "La Sapienza" University and INFN
- ★ Roma "Tor Vergata" University and INFN
- ★ Torino University and INFN
- ★ Trieste University
- ★ Udine University and INFN

ADONE (1969 - 1993)

- single bunch operation
- β value: 4.5 m (horizontal), 0.8 m (vertical)
- **beam-beam tune shift at 2 GeV** ($\Delta v \approx 0.035$)
- Iuminosity measured by single beam-beam bremsstrahlung: gas bremsstrahlung is subtracted by separating the beams at the i.p.

🖛 c.m. energy (max)	2.0 (3.1) GeV
🖛 peak luminosity	1.0 × 10 ²⁹ cm ⁻² s ⁻¹
particles/bunch	2.0 × 10 ¹⁰
crossing frequency	2.8 × 10 ⁶ Hz
■ emittance	0.14 mm rad
r.m.s. energy spread	3.8 × 10 ⁻⁴
horizontal r.m.s. beam size	1.15 mm
vertical r.m.s. beam size	0.08 mm
r.m.s. source lenght	6.0 cm

A. Feliciello / I.N.F.N. - Sezione di Torino

FENICE in numbers

~ 40000 channels Limited Streamer Tubes ~ 400 photomultipliers Acceptance: ~ 76% 4π sr for collinear tracks Energy resolution: 25 % / \sqrt{E} e.m. (8 X_0) 60 % / √E hadronic (1.5Λ) TOF resolution: 600 ps Neutral trigger efficiency 80 % @ 2 GeV 60 % @ 3 GeV Neutron detection efficiency 10 % @ 2 GeV 40 % @ 3 GeV Luminosity measurement via Bhabha scattering: in agreement with ADONE staff

neutron (*preliminary*)

q² [GeV²]	⊥ [nb⁻¹]	$\sigma(e^+e^- \rightarrow n\overline{n}) [nb]$	G _M
3.69	79	1.3 ± 0.3	0.32 ± 0.06
4.00	92	1.3 ± 0.4	0.35 ± 0.06
4.41	98	0.76 ± 0.13	0.25 ± 0.03

Proton time-like F.F. (high q²)

Asymptotic from $q^2 \approx 5 \text{ GeV}^2$

but $G_{time-like} \approx 2 G_{space-like}$ Same situation for the π FF (Milana et al. PRL 71 (1993))

 $|F_{\pi}(q^2 = M^2_{J/\psi})| \approx 2 F_{\pi} (q^2 = -9.6 \text{ GeV}^2)$ Diquark model (Kroll) and some PQCD calculation (Gousset-Pire P.R. D51 (1995)) slow approach to the asymptotic behaviour in the time-like region

A comment on J/ψ decay

 $J/\psi \rightarrow n\overline{n}$

FENICE (PL B301 (1993) 317) BR($e^+e^- \rightarrow n\bar{n}$) = (1.9 ± 0.5) 10⁻³

BONANZA (PL B78 (1978) 374) BR($e^+e^- \rightarrow n\overline{n}$) = (1.8 ± 0.9) 10⁻³

 $J/\psi \rightarrow p\overline{p}$

FENICE BR($e^+e^- \rightarrow p\overline{p}$) = (2.03 ± 0.32) 10⁻³

PDG BR($e^+e^- \rightarrow p\bar{p}$) = (2.16 ± 0.11) 10⁻³

 $1/\beta p\overline{p}$

A. Feliciello / I.N.F.N. - Sezione di Torino

 $e^+e^- \rightarrow hadrons$

A. Feliciello / I.N.F.N. - Sezione di Torino

How to reach the goal luminosity $\mathcal{L} \approx 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

2 basic alternatives:

small ring footprint and few bunches

- ▲ attractive from the accelerator physics point of view
- ▲ *lower* cost
- very high single bunch luminosity (!?!)

large ring footprint and many bunches

- ▲ conventional technologies
- ▲ more reliable

e⁺ and e⁻ circulate in 2 separate rings, ~ 100 m long, and collide at a horizontal half-angle $\vartheta_x = 10 - 15 \text{ mrad}$

high collision frequency without parasitic crossing

• 4-period modified Chasman-Green type lattice

crab-crossing option

 low β insertions carefully designed, because of 2 constraints:

 large, unencumbered solid angle around the interaction points (IP)

 horizontal separation required at a short distance from IP, to allow for short bunchto-bunch longitudinal distance

 $DA\Phi NE$ potentialities

At $\mathcal{L} = 5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ in a 10⁷ s year we will have a production of ~ 22 × 10⁹ ϕ

Considering the ϕ decays, with their branching ratios, we will obtain:

decay mode	B.R.	events per year
$\phi \to K^{+}K^{-}$	0.495	1.1 × 10 ¹⁰
$\phi \rightarrow K_L K_S$	0.344	$7.6 imes 10^9$
$\phi ightarrow \gamma \eta$	0.012	$2.8 imes 10^8$
$\phi ightarrow \gamma \eta'$	< 10 ⁻³	

Hence $DA\Phi NE$ can be regarded also as:

- a remarkably good K-factory
- a good η-factory
- an interesting source of η' and gluons (hopefully)

Possible high-statistics and high-precision "nice experiments"

> Double Annular *Φ*-factory for Nice *Experiments*

The KLOE experiment

- ★ Bari University and INFN
- Roma Istituto Superiore di Sanità and INFN
- INFN National Laboratories of Frascati
- ★ Lecce University and INFN
- ★ Napoli University and INFN
- ★ Pisa University and INFN
- ★ Roma "La Sapienza" University and INFN
- ★ Roma "Tor Vergata" University and INFN
- ★ Roma III University and INFN
- ★ Trieste University and INFN
- ★ Udine University and INFN
- ★ Columbia University, New York
- ★ IEKP, Universitat Karlruhe
- ★ IHEP, Institute of High Energy Physics, Academia Sinica
- ★ ITEP, Institute of Theoretical and Experimental Physics, Moscow
- ★ SUNY at Stony Brook
- ★ Tel Aviv University, School of Physics and Astronomy
- ★ Ben Gurion University

The KLOE apparatus

standard 4π, general purpose **c**ollider's apparatus

- large (~ 6 × 6 × 6 m³) cylindrical structure
- high resolution
- mininimum bias

tracking device \Rightarrow drift chamber (\emptyset = 4m, L = 3.5 m)

large fiducial volume for K_L decays

30 cm < r < 150 cm -150 cm < z 150 cm

(35% of all K_L are expected to decay in it)

 very light mechanical structure: 8 mm Carbon fiber

- operated with a Helium-based gas mixture
- high p resolution: $\Delta p_t/p_t \approx 2.5 \ 10^{-3}$

(at 220 MeV/c)

high reconstruction efficiency: ≥ 98%

other physics topics

searches for CP violation in $K_S \rightarrow 3 \pi^0$ radiative ϕ decays ($a_0(980)$ and $f_0(970)$ puzzle) e^+e^- annihilations into hadrons from threshold to 1.5 GeV

- rare K decays
- K-mesons and the Chiral Lagrangian
- rare η and π^0 decays

test of Quantum Mechanics

The FINUDA experiment

- ★ Bari University and INFN
- ★ Brescia University
- ★ INFN National Laboratories of Frascati
- ★ Pavia University and INFN
- ★ Torino University, Polytechnic and INFN
- ★ Trieste University and INFN
- ★ TRIUMF, Vancouver

Why a nuclear physics experiment at a collider?

The K⁻ from ϕ decay present a series of unique properties

nearly monochromatism (~ 16 MeV) no contamination low energy → range ~ 1 g/cm² straggling on range ~ 50 mg/cm² possibility of tagging by means of K⁺

They represent an ideal tool for high-resolution hypernuclear spectroscopy with stopped K⁻

Hypernuclei production

Strangeness exchange reaction (hystorical)

 $K^- + n \to \Lambda + \pi \qquad (1)$

- ▲ high cross section (~ mb/sr)
- K "beam" problems
 (π contamination, energy spread)
- very small momentum transfer to Λ
 (0 at the "magic momentum" of 505 MeV/c)
- reduced number of final states (A and n with the same spin and orbital wave function)

Associated production reaction

 $\pi^{+} + n \to \Lambda + K^{+} \qquad (2)$

- **\land** large momentum transfer to Λ (~ 250 MeV/c)
- ▲ large spectrum of final states
- **\blacktriangle** good intensity and quality π beams
- Iow cross section
 (2 order of magnitude lower than that of ①)

Hypernuclei production

The way of combining the advantages of ① and ② is that of exploting the formation reaction

 K_{stop}^- + $^{A}X_{Z} \rightarrow ^{A}_{\Lambda}X_{Z}$ + π^-

(250 MeV/c $\leq p_{\pi} \leq$ 280 MeV/c)

\land same momentum transfer to Λ of (2)

moderate hypernuclear final states rate production: 10⁻³/stopped K⁻

The FINUDA apparatus

It is a non focusing magnetic spectrometer with the following design features:

- cylindrical geometry
- large solid angle (> 2π sr)
- large momentum acceptance (100 - 300 MeV/c)
- excellent momentum resolution (~ 3‰ at 270 MeV/c)
- capability of detecting secondary charged particles: π and p from hypernuclear states decay

 capability of detecting n from non-mesonic decay of hypernuclei

It consist basically of:

- an interaction/target region
- e a compound tracking system
- (an outer scintillator array

It is immersed into a 1.1 T solenoidal magnetic field, uniform within 1% over the tracking volume

The FINUDA physics program

High resolution Λ-hypernuclei
 spectroscopy

- Study of hypernuclei decays and possible violation of the $\Delta I = \frac{1}{2}$ rule
- Production of Λ-hypernuclei with a large neutron excess
- Search for π⁺decay mode of hypernuclei
- **F** Study of the puzzle of Σ hypernuclei
- Measurement of K +- N total cross section

Study of K - N scattering at low energies

(1)

Λ free weak decay ($\tau ≈ 2.63 \ 10^{-10}$ s)

 $p + \pi + \sim 40 \text{ MeV}$ (~ 64 %)

 $\Lambda \rightarrow$

 $n + \pi^{0} + \sim 40 \text{ MeV}$ (~ 36 %)

Λ-hypernuclei, in their ground state, also decay via weak interaction mechhanism,

but when Λ is embedded in nucleus...

- □ Λ can be bound up to 25 MeV → phase space reduction for mesonic decay ①

