Weak decay of hypernuclei with FINUDA

Alessandro Feliciello I.N.F.N. - Sezione di Torino

Physical motivations

- see B.F. Gibson's talk
- see E. Oset's talk
- see H. Bhang's talk
- see W.M. Alberico's talk
- see C. Bennhold's talk
- 🖝 see H. Outa's talk
- see R.L. Gill's talk

(brilliant) source of monochromatic, collinear, background free, tagged neutral and charged kaons

Dominant in medium-heavy hypernuclei*

* $A \ge 5$

π

$$\Gamma_{nm} = \Gamma_n + \Gamma_p + \Gamma_{3N}$$

partial rate

non-mesonic

transition

 $\Gamma_n \qquad \Lambda + n \to n + n$ $\Gamma_p \qquad \Lambda + p \to n + p$

$$\Gamma_{3N}^{*} \qquad \Lambda + N + N \to N + N + N$$

*not taken into account in the following evaluations

The FINUDA strategy

$${}^{4}_{\Lambda}He \rightarrow \begin{cases} d+d \\ p+{}^{3}H \\ \pi^{+}+n+{}^{3}H \end{cases}$$

⁴He will be identified through its decay mode

What FINUDA may do with 50 pb⁻¹ (2 sets of targets)

observable	B.R.	collected	statistical
	(%)	events	error (%)
high resolution	13.00	5.60 10 ³	
hyp. spectr.	6	for ${}^{12}_{\Lambda}C$ g.s.	
τ_{hyp} (Γ_{tot})		1.09 10 ³	~ 3
$\Gamma_{\pi-}/\Gamma_{\Lambda}$	0.14 ^[1]	3.50 10 ²	~ 5
$\Gamma_{p}/\Gamma_{\Lambda}$	0.31 ^[1]	1.09 10 ³	~ 3
only <i>p</i> detect	13-12-1-		10000
Γ_p/Γ_Λ	0.31 ^[1]	93	~ 10
both <i>p</i> and <i>n</i> detected			1-61-65
Γ_n/Γ_Λ	0.58 ^[1]	48	~ 14
both <i>n</i> detected	19		
Γ_n/Γ_p	100	A COMPANY	~ 14

[1] H. Noumi et al., Phys. Rev. C52 (1995) 2936

an equivalent number of events for ¹¹_A excited states at ~ 10 M

pernuclear decay observables

		$^{12}_{\Lambda}C$
$\Gamma_{tot}/\Gamma_{\Lambda}$	total decay rate (lifetime) (strength of the interaction)	$1.25 \pm 0.18^{(4)}$
$\Gamma_{p}/\Gamma_{\Lambda}$	proton induced decay rate	$0.31 \pm 0.07^{+0.11(2)}_{-0.04}$
$\Gamma_n/\Gamma_{\Lambda}$	neutron induced decay rate	
$\Gamma_{nm}/\Gamma_{\Lambda}$	total non-mesonic decay rate	$\begin{array}{c} 1.14 \pm 0.20^{(1)} \\ 0.89 \pm 0.15 \pm 0.03^{(2)} \end{array}$
$\Gamma_{\pi^{-}}/\Gamma_{\Lambda}$	mesonic (π ⁻) decay rate (pion nucleus distortion)	$\begin{array}{c} 0.14 \pm 0.07 \pm 0.03^{(2)} \\ 0.052^{+0.063^{(1)}}_{-0.035} \end{array}$
Γ_n/Γ_p	n/p induced decay rate (isospin structure of interaction)	$\begin{array}{c} 1.33_{-0.81}^{+1.12^{(1)}} \\ 1.87 \pm 0.59_{-1.00}^{+0.32^{(2)}} \\ 0.70 \pm 0.3^{(3)} \\ 0.52 \pm 0.16^{(3)} \end{array}$

with

(2) H. Noumi et al., Phys. Rev. C52 (1995) 2936 (3) A. Montwill et al., Nucl. Phys. A234 (1974) 413

(4) R. Grace et al., Phys. Rev. Lett. 55(1985) 1055

reconstruction:

- proton
 - acceptance

15%

- momentum resolution 1% (at ~ 510 MeV/c)
- T.o.F.

500 ps (FWHM)

- triton
 - acceptance
 - poor momentum resolution

What FINUDA may do with 50 pb⁻¹ (2 sets of targets)

observable	B.R.	collected	statistical
	(%)	events	error (%)
τ_{hyp} (Γ_{tot})	3656	3.81 10 ³	~ 2
$\Gamma_{\pi-}/\Gamma_{\Lambda}$	0.44 ^[1]	5.50 10 ³	~ 1
Γ_p/Γ_Λ	0.21 ^[1]	3.81 10 ³	~ 2
only <i>p</i> detect		1011111	
Γ_p/Γ_Λ	0.21 ^[1]	3.28 10 ²	~ 6
both p and n	10.2		1000
detected			
Γ_n/Γ_Λ	0.20 ^[1]	82	~ 11
both <i>n</i> detected			1.2334.CP2
[1] J.J. Szymanskypet al. Phys	Rev. C43, (19	91) 849	~ 11

observable	B.R.	collected	statistical
	(%)	events	error (%)
Γ_d/Γ_Λ	10 ⁻³	32	~ 18
both <i>d</i> detected			
$\Gamma_t/\Gamma_{\Lambda}$	10-3	19	~ 23
both <i>p and ³H</i> detected	1		
		C THE	

Hypernuclear decay observables

Measured decay properties of light hypernuclei. *				
Decay ratios	This work	Outa et al. [22]	Older results	References
H				
$\Gamma_{\rm tot}/\Gamma_{\Lambda}$		$1.36^{+0.21}_{-0.15}$		
Γ_{nm}/Γ_{n-}			0.26 ± 0.13	[23]
$\Gamma(\pi^- + {}^4 \text{He})/\Gamma_{\pi^-}$			$0.69^{+0.12}_{-0.09}$	[25]
				· · ·
$\Gamma_{\rm tot}/\Gamma_{\Lambda}$	1.07 ± 0.11	$1.03^{+0.12}_{-0.10}$	1.15 ± 0.48	[4]*
$\Gamma_{\pi^*}/\Gamma_{tot}$	0.57 ± 0.09	0.515 ± 0.035		
$\Gamma_{\pi^*}/\Gamma_{\Lambda}$	0.61 ± 0.08	0.53 ± 0.07		
$\Gamma_{\pi^-}/\Gamma_{\Lambda}$	0.26 ± 0.03	0.33 ± 0.05		
$\Gamma_{\pi^*}/\Gamma_{\pi^-}$	2.3 ± 0.4	1.59 ± 0.20	2.49 ± 0.34	[23]
			2.20 ± 0.39	[24]
T.A.T			0.043±0.017	
Γ_p/Γ_Λ	0.16 ± 0.02	0.16 ± 0.02		
Γ_n/Γ_Λ	0.04 ± 0.02	0.01 ± 0.05		
$\Gamma_{\rm nm}/\Gamma_{\pi^-}$	0.77 ± 0.15	0.51 ± 0.16	0.56 ± 0.09	[4]*
Γ_n/Γ_p	0.25 ± 0.13	0.06 ± 0.40	0.40 ± 0.15	[23]
	< 0.40		0.29 ± 0.13	[24]
$\Gamma_{\rm tot}/\Gamma_{\Lambda}$			1.03 ± 0.08	[21]
$\Gamma_{\pi^0}/\Gamma_{\Lambda}$			0.18 ± 0.20	
				8
$\Gamma_{\rm am}/\Gamma_{\pi^-}$			0.92 ± 0.31	25

* reanalysis of many older measurements.

* from V.J. Zeps, *Nucl. Phys.* A639 (1998) 261c [18] G. Keyes *et al., Il Nuovo Cim.* 31A (1976) 401 [21] J.J. Szymanski *et al., Phys. Rev.* C 43 (1991) 849

The case of ${}^{4}_{\Lambda}He \pi^{+} decay$

$$^{4}_{\Lambda}He \rightarrow \pi^{+} + n + {}^{3}H$$

experimentally: $\Gamma_{\pi^+} / \Gamma_{\pi^-} \approx 5\%$

G. Keyes et al., Il Nuovo Cim. 31A (1976) 401
C. Mayeur et al., Il Nuovo Cim. 44 (1966) 698
G. Bohm et al., Nucl. Phys. B 9 (1969) 1

no Λ π^+ decay mode!

possible mechanisms:

Gibson & Timmermans

$$\Lambda \rightarrow \pi^{0} + n$$

$$\pi^{0} + p \rightarrow \pi^{+} + n$$

$$\begin{array}{c} \Lambda + p \to \Sigma^{+} + n \\ \Sigma^{+} \to \pi^{+} + n \end{array}$$

$$\Gamma_{\pi^+} / \Gamma_{\pi^-} \leq 1\%$$

$$\begin{array}{c} 1 + p \to \Sigma^{+} + n \\ \Sigma^{+} + N \to \pi^{+} + n + N \end{array}$$

• π^+ emission is a s-wave process

n

• π^+ energy spectrum flat

FINUDA could potentially collect a large number of events (~ 4.04 10³)

The case of ${}^{4}_{\Lambda}He \pi^{+} decay$

• 29 < p_{π_+} < 95 MeV/*c*: hard to be tracked • p_{μ_+} = 30 MeV/*c*: impossible to be tracked

> We need a clever strategy to filter the events

Conclusions

FINUDA is ready to be installed errors on measurements of some observables related to hypernuclei weak decay are 1 order of magnitude lower than for the existing data some rare decay channels can be measured for the first time the success of the FINUDA hypernuclear program depends on the DA Φ NE luminosity

