

(low-energy) YN interaction

- > detailed knowledge of the hypernuclear fine structure
 - \rightarrow evaluation of the spin dependent terms of the ΛN interaction

7

- > measurement of angular distribution of γ -rays
 - \rightarrow determination of spin and parity of each observed level

Spin-dependent forces

The simple structure of light hypernuclear system can be described in the frame of the shell model

$$V_{\Lambda-N}(r) = V_0(r) + V_{\sigma}(r)\vec{s}_N\cdot\vec{s}_{\Lambda} + V_{\Lambda}(r)\vec{l}_{N\Lambda}\cdot\vec{s}_{\Lambda} + V_N(r)\vec{l}_{N\Lambda}\cdot\vec{s}_{N} + V_N(r)\vec{l}_{N\Lambda}\cdot\vec{s}_{N} + V_N(r)\vec{l}_{N\Lambda}\cdot\vec{s}_{N}$$
$$+ V_T(r)[3(\vec{\sigma}_N\cdot\vec{r})(\vec{\sigma}_{\Lambda}\cdot\vec{r} - \vec{\sigma}_N\cdot\vec{\sigma}_{\Lambda})]$$

Each of the 4 terms (Δ , S_{Λ} , S_{N} , T) correspond to a radial integral that can be phenomelogically determined from the low-lying level structure of *p*-shell hypernuclei

The knowledge of these characteristics of the ΛN interaction allows to improve baryon-baryon interaction description

INFN

8

Where do we stand?

Where do we stand?

D.J. Millener, Nucl. Phys. A 754 (2005) 48c

(INFN)

Where do we stand?

What do we learnt?

the determined set of parameters is not universal

γ-ray spectroscopy is the new frontier for hypernuclear physics

Charge symmetry breaking

Which role for magnetic spectrometer?

unambiguous identification of the S = -2 hypernuclei usually relies on the observation of the double sequential (pionic) weak decay

the next generation apparatuses should be a smart combination of magnetic spectrometer and γ-ray detector arrays

A paradigmatic example of collaboration

(NEN)

(INFN)

Peak number	$-B_{\Lambda} \;({ m MeV})$	Capture rate/(stopped K^-)[×10 ⁻³]
1	-10.94 ± 0.06	$1.01\pm0.11_{stat}\pm0.10_{syst}$
2	-8.4 ± 0.2	0.21 ± 0.05
3	-5.9 ± 0.1	0.44 ± 0.07
4	-3.8 ± 0.1	0.56 ± 0.08
5	-1.6 ± 0.2	0.50 ± 0.08
6	0.27 ± 0.06	2.01 ± 0.17
7	2.1 ± 0.2	0.58 ± 0.18

M. Agnello et al., Phys. Lett. B 622 (2005) 35

- A Binding energy (MeV)

-16 -14 -12 -10 -8 -6 -4 -2 0

مىلتە

300 320

(MeV/c)

background process giving π following K⁻ absorption on ⁷Li

240

26

π momente

200 220

100

 $K(\mathcal{NON}) \to \Sigma^{-}\mathcal{N}$ $\Sigma \rightarrow r$ $K n \to \Lambda(\pi)$ $K \rightarrow \mu \nu_{\mu}$

in flight

 $B^{g.s.}_{\Lambda} = 5.58 \pm 0.03 \text{ MeV}$ M. Jurić et al., Nucl. Phys. Rev. B 52 (1973) 1

		•		
		$-B_A \pm stat. \pm syst.$	Yield	Production rate
$1(\pi)$		(MeV)	(events)	$(\text{per } K^- \text{ stop})$
	1	$-5.33 \pm 0.13 \pm 0.18$	52 ± 11	$0.47 \pm 0.12 \pm 0.11\%$
	2	$-3.68 \pm 0.15 \pm 0.18$	44 ± 10	$0.39 \pm 0.11 \pm 0.11\%$
		<mark>spin-flip</mark> amplitude ≈ ($ \begin{bmatrix} 1 = 1/2^+ \\ 2 = 5/2^+ \end{bmatrix} $

 E_x (MeV)

(INFN)

(low-energy) YN interaction

> detailed knowledge of the hypernuclear fine structure

 \rightarrow evaluation of the spin dependent terms of the ΛN interaction

> measurement of angular distribution of γ -rays

 \rightarrow determination of spin and parity of each observed level

Impurity nuclear physics

- > measurement of transition probability B(E2)
 - \rightarrow information on the size and deformation of hypernuclei
 - \rightarrow measurement of nucleus core shrinking \rightarrow glue-like role of Λ

39

Open questions

(low-energy) YN interaction

- > detailed knowledge of the hypernuclear fine structure
 - \rightarrow evaluation of the spin dependent terms of the ΛN interaction
- > measurement of angular distribution of γ -rays
 - \rightarrow determination of spin and parity of each observed level
- Impurity nuclear physics
 - > measurement of transition probability B(E2)
 - \rightarrow information on the size and deformation of hypernuclei
 - $\rightarrow\,$ measurement of nucleus core shrinking $\rightarrow\,$ glue role of $\Lambda\,$

Properties of hyperons in nuclear matter (medium effect)

- > measurement of transition probability B(M1)
 - \rightarrow g-factor value for \wedge in nuclear matter

Physics

Neutron (n)

٠

Nuclear Transmutation

Materials and Life

Science

Strangeness Nuclear Physics approved experiments

- E05: \equiv hypernuclei spectroscopy (1st priority)
 E13: hypernuclear γ -ray spectroscopy (2nd priority)

- E15: search for K⁻pp bound state
- E17: kaonic ³He 3d \rightarrow 2p X-ray
- E19: search for penta-quark in $\pi^-p \rightarrow K^-X$ reaction
- E07: hybrid emulsion for double Λ hypernuclei • E03: Ξ-atom X-rays

Proton (p) 3 GeV. 50 GeV

45

S = -2 systems study is not just a simple extension of what has been done for S = -1 system

new physics items:

- A detailed and consistent understanding of the quark aspect of the baryon-baryon forces in the SU(3) space will not be possible as long as experimental information on the YY channel is not available
- search for *H* particle
- \diamond existence of S = -2 (deeply) bound \overline{K} states

experimental challenges:

- ♦ (abundant) production of AA- and Ξ-hypernuclei
 - is really difficult
- identification of produced hyperfragments is problematic
- γ-ray measurement in coincidence

The status of the art

single event analysis

					_				
reference (<mark>year</mark>)	hyper nucleus	Β _{ΛΛ} [MeV]	ΔB _{ΛΛ} [MeV]	notes					
M. Danysz <i>et al.,</i> <i>Nucl. Phys.</i> 49 (<mark>1963</mark>) 121	$^{10}_{\Lambda\Lambda}Be$	17.7 ± 0.4	4.3 ± 0.4	emulsion exp.; Dalitz' reanalysis					
D. Prowse <i>et al.</i> , <i>Phys. Rev. Lett.</i> 17 (1966) 782	6/ _{ΛΛ} He ×	10.9 ± 0.5	4.6 ± 0.5	emulsion exp.; Dalitz' criticism					
S. Aoki <i>et al.,</i> <i>Prog. Theor. Phys.</i> 85 (1991) 951	$^{13}_{\Lambda\Lambda}B$	27.6 ± 0.7	4.8 ± 0.7	KEK-E176 emulsion-counter	me ent				
S. Aoki <i>et al.,</i> <i>Prog. Theor. Phys.</i> 85 (1991) 1287	$^{10}_{\Lambda\Lambda}Be$	8.5 ± 0.7	-4.9 ± 0.7	hybrid exp. (*)	sal eve				
J.K. Ahn <i>et al.,</i> <i>Phys. Rev. Lett.</i> 87 (2001) 132504	$^{4}_{\Lambda\Lambda}H$			BNL-E906 "mass production"					
H. Takahashi <i>et al.,</i> <i>Phys. Rev. Lett.</i> 87 (2001) 212501	⁶ <i>He</i>	$7.25 \pm 0.19^{+0.18}_{-0.11}$	$1.01 \pm 0.20^{+0.18}_{-0.11}$	KEK-E373 emulsion-counter hybrid exp.					
H. Takahashi <i>et al.</i> , <i>Nucl. Phys.</i> A 721 (2003) 951c	$^{10}_{\Lambda\Lambda}Be$	12.33 ^{+0.35}		KEK-E373 emulsion-counter					
*) see: C.B. Dover, D.J. Millener, A. Gal and D.H. Davis, <i>Phys. Rev.</i> C 44 (1991) 1905 $\Delta B_{\Lambda\Lambda}({}^{A}_{\Lambda\Lambda}Z) = B_{\Lambda}({}^{A}_{\Lambda\Lambda}Z) + B_{\Lambda}({}^{A-l}_{\Lambda}Z)$									

(INFN)

Summary

✓ Hypernuclear physics is a challenging research field and has a great discovery potential

- number of exp. physicist involved is growing
- main item in several future physics program at new facilities
- dedicated beams and apparatus
- significant theoretical effort well tuned on exp. data
- The synergic exploitation of the progress in detection techniques and of the improvement of the quality of the available beams is the premise for a significant step forward in our understanding of the baryon-baryon interaction.

Thank you!

どうも ありがとう