Antinucleon - Nucleon elastic cross section below 100 MeV/c

Alessandro Feliciello I.N.F.N. - Sezione di Torino

for the ELAPP study group

Low Energy Antiproton Physics Venice, Italy, August 20 - 26, 2000

Outlook

- Anomalies in the NN system, near threshold
 np total cross section
- A possible measurement
 of pp elastic cross section
 at AD
 the ELAPP project

[*Phys. Lett.* **B** 475 (2000) 378]

3

Experimental situation for NN system

FENICE experiment (ADONE/LNF) **σ(e⁺e⁻)** → hadrons

[Nucl. Phys. B 517 (1998) 3]

 M_x = (1.87 ± 0.01) GeV Γ_x = (10 ± 5) MeV

The threshold region

other anomalies:

- ρ parameter
- new result from FOCUS experiment

Which origin for such anomalies?

- threshold of the $\overline{p}p \rightarrow \overline{n}n$ channel
 ($p_{\overline{p}}^{lab}$ = 98 MeV/c)
- s-wave dominance, in the frame of coupled channel approach
- quasi-nuclear bound states near threshold

measurement of $\sigma_{ela}(\overline{pp})$ at low momentum

measurement of d{/d} \Omega

(relative importance of s- and p-wave contributions) essential to discriminate among different hypotheses

Is it possible to perform such a measurement at a machine like AD??? (the unique source of \overline{p} in world today)

Experimental problems

- simultaneous detection of:
 - large dE/dx
 - secondary particle emission
 - very low energy (0 ÷ 5 MeV)
- no trigger possible, due to the AD beam structure: intensity: 10⁶ ÷ 10⁷ burst duration: ≤ 1 µs frequency: ~ 10⁻² Hz
- the detector must be operated in vacuum

• very thin CH_2 target needed (1 ÷ 10 μ m)

- difficult to produce
- difficult to sustain in place
- fixed beam energy

The ELAPP project

provided that:

- no more than 30 ÷ 40 interactions/spill
- no (few) particles from spurious events
 - \overline{p} annihilation from beam halo
 - *p* annihilation in structures surrounding the apparatus

The typical event

The typical event gallery

The "anti" typical event

Detection threshold

Detection threshold

Expected event rates

(rough estimation)

Requirements for the beam

Variable energy: 50 ÷ 100 MeV/c... but also 100 ÷ 200 MeV/c no measurements in this region easier p detection

good focus: Ø ≤ 2 mm no halo at r ≈ 3 cm

 all possible sources of background (degrader, collimator, beam dump) far away from the detector (≥ 4m)

A possible beam line

AD experimental hall

Open questions

- response of scintillating fibers
 to low energy p:
 - test scheduled at INFN/Legnaro
 Laboratories, by the end of fall

choice of the fibers:

- size
- shape
- Seam dump location:
 - pit in the floor???
- * absolute value of $\sigma_{ela}(\overline{pp})$:
 - normalization with $\sigma_{ann}(\overline{pp})$ (OBELIX)
 - measurement with ¹²C thin "blank" target to determine the contribution of $\sigma_{ann}(\bar{p}^{12}C)$
- * pattern recognition:
 - capability of the algorithm to still recognize events in presence of background (mainly straight tracks due π)

σ_{tot}(*np*) measured for the first time:
 down to 50 MeV/c
 with high statistics

✓ evident anomalous behaviour of σ_{tot} ($\overline{n}p$) (→ σ_{ela} ($\overline{n}p$)) near threshold

indication for a structure below 100 MeV/c in the elastic channel???

 possibility of looking at this effect in the elastic (pp) channel, never measured, at AD machine