

Alessandro Feliciello / I.N.F.N. - Sezione di Torino

- ★ The OBELIX apparatus
- **\star** The OBELIX \bar{n} facility
- $\star \overline{n}p$ annihilation cross sections
- $\star \overline{n}p$ total cross section
- Hint for the existence of a narrow quasi-nuclear state near the threshold

Beam intensity: $10^7 \ \overline{p}/s$ $\Delta p/p$: ~ 10^{-4}

- \blacktriangle scarce data on low-energy \overline{np} interaction
- \blacktriangle complementary/alternative to $\overline{p}p$ interaction
- \blacktriangle the initial $\overline{n}p$ state is a pure I = 1 state
- ▲ better energy and momentum resolution, compared to $\overline{p}d$ reaction, due to the absence of the spectator proton
- ▲ the percentage of *P*-wave in the initial state can be controlled by increasing the \overline{n} momentum
- ▲ at least one prong in the final state (optimal for OBELIX)

but

- technically difficult
- V low production rate (~ 60 10⁻⁶ \bar{n}/\bar{p})

Absence of Coulomb interaction: no distortion on the σ trend in the low momentum region

$$\sigma_{ann}^{i} = \frac{1}{\rho N_{A} \Delta z} \frac{1}{\varepsilon \varepsilon_{trig}} \frac{N_{ann}^{i} (1 - \gamma^{i})}{N_{\overline{n}}^{i}}$$

A. Feliciello

$$\sigma_{tot} = \frac{4\pi}{k^2} \sum_{l} (2l+1) Im f_l$$

$$f_l = \frac{1}{\cot \delta_l - i}$$

$$\sigma_{tot} = \frac{4\pi}{k^2} \sum_{l} (2l+1) Im f_l$$

$$f_l = \frac{1}{\cot \delta_l - i}$$

S- and P- waves + B.W.

 $M_{x} \sim 1881 \text{ MeV}$ $\Gamma_{x} \sim 4 \text{ MeV}$

S-, *P*- and *D*- waves + B.W.

 $M_{x} \sim 1881 \text{ MeV}$ $\Gamma_{x} \sim 4 \text{ MeV}$

70 < p < 90

90 < p < 110

130 < p < 150

$$\sigma_{tot} = \frac{4\pi}{k^2} \sum_{l} (2l+1) Im f_l$$

$$f_l = \frac{1}{\cot \delta_l - i}$$

$$\sigma_{tot} = \frac{4\pi}{k^2} \sum_{l} (2l+1) Im f_l$$

$$f_l = \frac{1}{\cot \delta_l - i}$$

S-, *P*- and *D*- waves + B.W.

FENICE experiment $e^+e^- \rightarrow hadrons$

[Nucl. Phys. B 517 (1998) 3]

Isospin dependence

 $\star \bar{n}p \sigma_{tot}$ and σ_{ann} measured for the first time: $\mathbf{0}$ down to 50 MeV/c With high statistics \star impossible to disentangle the I=0 and the I=1 contributions, due to the lack of $\overline{p}p \sigma_{tot}$ data below 200 MeV/c \star confirmation of the abnormally large P-wave contribution in some low-energy NN interactions \star indication of a narrow (quasi-nuclear ?) state (as usual, much more work needed)