

RIKEN Nishina Center for Accelerator-Based Science

International Workshop on Future prospect on nuclear physics with strangeness at J-PARC RIKEN, Tokyo, Japan, May 31 – June 1, 2014

Present situation of ⁶**H**_A, **recent advance on non-mesonic hypernuclear decay and future project(s)**

Alessandro Feliciello **I.N.F.N. - Sezione di Torino**

A warm thanks to the organizers for the invitation

and to

Grant-In-Aid for Scientific Research on Innovative Areas "Nuclear Matter in Neutron Stars Investigated by Experiments and Astronomical Observations"

for the **financial support**

INFN

recent experimental results:

FINUDA @ INFN/LNF

🦾 E10 @ J-PARC

a look to the (next) future:
J-PARC: what next?

Kinematics and binding energy

18

What next?

Last but not least results from FINUDA:

- first experimental evidence for the heavy hyperhydrogen ⁶H_Λ
- Imited number of candidates (3)

- negative results from J-PARC E10
- theoretical predictions not in agreement

Further investigations needed both experimental and theoretical

Japan, May 31 – June 1, 2014

A. Feliciello / International Workshop on Future prospects on nuclear physics with strangeness at J-PARC, RIKEN, Tokyo,

* experimental hardness: 3 nucleons emitted from Λ-hypernucleus g.s. 4-fold coincidence measurement (π^- , p, n, n)

Further analysis of the proton spectra

Attempt of improving the fits by lowering the starting points for the fits to 50, 60 and 70 MeV:

A. Feliciello / International Workshop on Future prospects on nuclear physics with strangeness at J-PARC, RIKEN, Tokyo, Japan, May 31 – June 1, 2014

better value of $\chi^2/n = 1.33$ when choosing the start at 70 MeV

Further analysis of the proton spectra

fits to Gaussians of experimental proton spectra starting from 80 MeV, with free centers (μ), widths and areas disagreement of values of μ from whose expected from exact Q-values (b-to-b kinematics and no-recoil of the residual nucleus) for ¹³C_A and, especially, ¹⁵N_A and ¹⁶O_A

A. Feliciello / International Workshop on Future prospects on nuclear physics with strangeness at J-PARC, RIKEN, Tokyo, Japan, May 31 – June 1, 2014

(Slightly) Revised determination of Γ_{2N}

The values of μ were used to divide the full area of the proton spectra into two regions, A_{low} and A_{high} . It was shown that from the expression:

$$R_1(A) = \frac{A_{low}(A)}{A_{low}(A) + A_{high}(A)}$$

the ratio Γ_{2N}/Γ_{p} can be obtained (under the assumption that it is constant in the range A = 5 ÷ 16). It was found:

$$\Gamma_{2N}/\Gamma_{p} = 0.43 \pm 0.25$$
 $(\Gamma_{2N}/\Gamma_{NMWD} = 0.21 \pm 0.10)$

With the new values we find:

-June 1, 2014

at J-PARC, RIKEN, Tokyo, Japan, May 31

4. Feliciello / International Workshop on Future prospects on nuclear physics with strangeness

INFN

$$\Gamma_{2N}/\Gamma_{p} = 0.50 \pm 0.24$$
 ($\Gamma_{2N}/\Gamma_{NMWD} = 0.25 \pm 0.12$)

compatible with the previous one, within the errors.

(Slightly) Revised determination of Γ_{2N}

Subsequently a more precise determination of Γ_{2N}/Γ_{p} was obtained, by considering the (n,p) coincidence. We defined the ratio

A. Feliciello / International Workshop on Future prospects on nuclear physics with strangeness at J-PARC, RIKEN, Tokyo, Japan, May 31 – June 1, 2014

fully compatible with the previous one, within the errors.

 $\alpha(A) = (0.215 \pm 0.031)A$

First determination of Γ_{p} **for 8 Hypernuclei**

A possible apparatus concept layout

(a (a

ocl

oc

2

A. Feliciello / International Workshop on Future prospects on nuclear physics with strangeness at J-PARC, RIKEN, Tokyo, Japan, May 31 – June 1, 2014

INFN

Cylindrical Detector System

(K1.8BR spectrometer)

essential requirements

magnetic analysis of decay products **arge** detection solid angle ($\sim 2\pi$)

SKS magnet

platform

och

on

deroget vov

Lucite Kov

-100 Meylc

-600 Meylc

Wall

(K1.8 spectrometer)

A possible apparatus concept layout

Detector (minimal) requirements

- threshold for proton detection:
- energy resolution:

A. Feliciello / International Workshop on Future prospects on nuclear physics with strangeness at J-PARC, RIKEN, Tokyo, Japan, May 31 – June 1, 2014

INFN

• good YN vertex localization:

- ~ 3 MeV (FWHM)
- ~ 1 2 mm (FWHM)

• time resolution:

< 200 ps (FWHM)

A special thanks to:

- Michelangelo Agnello
- Elena Botta
- 🖲 Tullio Bressani
- Stefania Bufalino