

Third International Conference on PERSPECTIVES IN HADRONIC PHYSICS 7 - 11 May 2001 Miramare-Trieste, Italy

Antinucleon-nucleon cross section near the <u>threshold</u> region

Alessandro Feliciello I.N.F.N. - Sezione di Torino

+ Physics motivations

- Anomalies in the NN system, near threshold
 np total cross section
- A possible measurement
 of pp elastic cross section
 at AD
 the ELAPP project

Physics motivations

<u>historical</u>

• 60's: description of ordinary mesons $(\pi, \rho, ...)$ spectrum (unsuccessful)

QCD

 80's - 90s': search for multiquark configurations (exotics, glueballs, hybrids, non qq meson, ...)

<u>nuclear physics</u>

understanding of nuclear forces:

- G-parity rule ($\overline{pp} \leftrightarrow pp$ and $\overline{np} \leftrightarrow np$)
- several NN bound states or resonances
 (NN potential deeper than the NN one)
- isospin dependence of the \overline{NN} interaction (comparison of \overline{pp} with \overline{np} or \overline{pn} data)
- dependence of annihilation strength on some channels (fit to the scattering and annihilation data)

A. Feliciello

[*Phys. Lett.* **B** 475 (2000) 378]

The transmission technique

The transmission technique

Comparisons

A. Feliciello

FENICE experiment (ADONE/LNF) σ(e⁺e⁻) →hadrons

[Nucl. Phys. B 517 (1998) 3]

 M_x = (1.87 ± 0.01) GeV Γ_x = (10 ± 5) MeV

The threshold region

other anomalies:

- ρ parameter
- old hints from DM2 experiment (still unpublished!)
- new results from FOCUS experiment

The ρ parameter

Photoproduction experiments

 $3\pi^+ 3\pi^-$ inv. mass distribution in high energy photoproduction *A. Feliciello*

Which origin for such anomalies?

- threshold of the $\overline{p}p \rightarrow \overline{n}n$ channel $(p_{\overline{p}}^{lab} = 98 \text{ MeV/c})$
- s-wave dominance, in the frame of coupled channel approach
- quasi-nuclear bound states near threshold

measurement of $\sigma_{ela}(\overline{pp})$ at low momentum

measurement of d{/d} \Omega

(relative importance of s- and p-wave contributions) essential to discriminate among different hypotheses

Is it possible to perform such a measurement at a machine like AD??? (the unique source of \overline{p} in world today)

16

Experimental problems

- simultaneous detection of:
 - 🖝 🖻 🛛 large dE/dx
 - secondary particle emission
 - very low energy (0 ÷ 5 MeV)
- e no trigger possible, due to the AD beam structure: intensity: 10⁶ ÷ 10⁷ burst duration: ≤ 1 µs frequency: ~ 10⁻² Hz
- the detector must be operated in vacuum
- very thin CH_2 target needed (1 ÷ 10 μ m)
 - difficult to produce
 - difficult to sustain in place
- fixed beam energy

The ELAPP project

- no more than 30 ÷ 40 interactions/spill
- no (few) particles from spurious events
 - \overline{p} annihilation from beam halo
 - *p* annihilation in structures surrounding the apparatus

A. Feliciello

The typical event

20

The "anti" typical event

21

Expected event rates (rough estimation)

 $\mathcal{N}_{int} = (\mathcal{N}_{\bar{p}} \cdot x)\rho(\frac{2}{14} \cdot 500 + \frac{1}{14} \cdot 2600) \cdot 10^{-27} \cdot \mathcal{N}_{A}$ $\int_{\sigma_{T}}^{\sigma_{T}(\bar{p}p)} = 500 \text{ mb}$ $\sigma_{T}(\bar{p}^{12}C) = 2600 \text{ mb}$ $\rho = 1.1 \text{ g/cm}^{3}$ $\mathcal{N}_{p} \text{ expressed in units of 10^{6}}$ $\mathcal{N}_{ela} = (\mathcal{N}_{\bar{p}} \cdot x)\rho(\frac{2}{14} \cdot 150) \cdot 10^{-27} \cdot \mathcal{N}_{A} \cdot \Delta\Omega \cdot \varepsilon_{r}$

 $\sigma_{\rm E}(\bar{p}p) = 150 \text{ mb}$ $\Delta \Omega \sim 0.7 \cdot 4\pi$ $\varepsilon_{\rm r} \sim 50\%$ $N_{\rm expressed in units of 10^{6}}$ $N_{\rm pressed in \mu m}$

$$N_{ela/int} \approx 3 \cdot 10^{-2}$$

40 int./burst \rightarrow 1 elastic scatt./burst

1.5 · 10³ elastic scatt./day

Requirements for the beam

 Variable energy: 50 ÷ 100 MeV/c... but also 100 ÷ 200 MeV/c
 no measurements in this region
 easier p detection

good focus: Ø ≤ 2 mm no halo at r ≈ 3 cm

 all possible sources of background (degrader, collimator, beam dump) far away from the detector (≥ 4m) CERN/SPSC 2001/002 - SPSC/P320 December 14, 2000

Proposal to the SPSC

Measurement of the <u>ELastic Anti</u> <u>Proton Proton Cross Section at AD</u>

The ELAPP Collaboration

M. Agnello^a, M. Astrua^b, E. Botta^b, T. Bressani^{b 1}, L. Busso^c, D. Calvo^b, A. Feliciello^b, A. Filippi^b, F. Iazzi^a, S. Marcello^b, O. Morra^d, V. Mussino^a, G. Rizzi^a

*Politecnico di Torino and INFN, Sezione di Torino, Torino, Italy

^bDipartimento di Fisica Sperimentale, Università di Torino, and INFN, Sezione di Torino, Torino, Italy

^cDipartimento di Fisica Generale "A. Avogadro", Università di Torino and INFN, Sezione di Torino, Torino, Italy

^dCNR, Istituto di Cosmogeofisica, and INFN, Sezione di Torino, Torino, Italy

<u> 1</u>

[&]quot;Spokeperson, e-mail address: bressani@to.infn.it

σ_{tot}(*np*) measured for the first time:
 down to 50 MeV/c
 with high statistics

✓ evident anomalous behaviour of $\sigma_{tot}(\bar{n}p)$ (→ $\sigma_{ela}(\bar{n}p)$) near threshold

indication for a structure below 100 MeV/c in the elastic channel???

possibility of looking at this effect in the elastic (pp) channel, never measured (but where???)