

Strange quarks

Alessandro Feliciello I.N.F.N. - Sezione di Torino

 Discovery potential of the strangeness nuclear physics
 recent experimental results
 unexpected effects

Need of sub-MeV resolution apparatuses

 ^{*} γ-ray spectroscopy

F Ideas for **PANDA** apparatus

What is the strangeness nuclear physics?

Strangeness nuclear physics born exactly 50 years ago

Today hypernuclear physics is a mature research field with a well defined "personality"

✓ number of exp. physicists involved is growing

 \square dedicated beams and apparatus

☑ significative theoretical effort well tuned on exp. data ☑ main item in several future physics program

Physics output

1) strangeness exchange (both in flight and at rest):

$$K^{-} + {}^{A}Z \rightarrow {}^{A}_{\Lambda}Z + \pi^{-}$$

2) associated production:

$$\pi^+ + {}^A Z \longrightarrow {}^A_\Lambda Z + K^+$$

3) electro-production:

$$e^{-}+^{A}Z \rightarrow e^{-'}+K^{+}+^{A}_{\Lambda}(Z-1)$$

A hypernucleus is the outcome of a genetic engineering manipulation applied to the nuclear physics domain A-hypernucleus spectroscopy

The simple structure of light hypernuclear systems can be described in the frame of the shell model

$$V_{\Lambda-N}(r) = V_0(r) + V_{\sigma}(r)\vec{s}_N \cdot \vec{s}_{\Lambda} + V_{\Lambda}(r)\vec{l}_{N\Lambda} \cdot \vec{s}_{\Lambda} + V_N(r)\vec{l}_{N\Lambda} \cdot \vec{s}_{N} + V_N(r)\vec{l}_{N\Lambda} \cdot \vec{s}_{N} + V_T(r)[3(\vec{\sigma}_N \cdot \vec{r})(\vec{\sigma}_{\Lambda} \cdot \vec{r} - \vec{\sigma}_N \cdot \vec{\sigma}_{\Lambda})]$$

Each of the 5 terms (V, Δ , S_{Λ}, S_{Λ}, T) correspond to a radial integral that can be phenomelogically determined from the low-lying level structure of *p*-shell hypernuclei

The knowledge of the spin-dependent components of the AN interaction allows to improve baryon-baryon interaction models and to discriminate between the ones based on meson exchange picture and those including quark-gluon degrees of freedom The energy spectrum of hypernuclei cannot be completely reproduced by a simplified 2-body effective interaction scheme

Study of ANN 3-body and of AN 2-body forces is of great importance to understand the structure of hypernuclei

• $\Delta m_{\Sigma-\Lambda} \ll \Delta m_{\Delta-N} \rightarrow \Lambda NN \gg NNN$ • $\Lambda NN > \Lambda N$

Possible explanations: $\cdot \Lambda \Sigma^0$ mixing $\cdot \Lambda N - \Sigma N$ coupling

The hypernucleus non-mesonic decay provides primary means of studying the baryon-baryon weak interaction

- only information on the parity violating part of weak interaction is accessible
- parity conserving part is masked by strong interaction

 both information on the parity violating and parity conserving parts of weak interaction can be extracted

* q ~ 400 MeV/c \Rightarrow probes short distance

 $\sim \Delta = \frac{1}{2} \text{ rule applies also to non-mesonic weak decay?}$ $\sim \text{The role of explicit quark/gluon substructures can be put in evidence?}$

If the mass or the size of a hyperon is modified in a nucleus, its magnetic moment may be changed

$$\begin{aligned} \left(B(M1) \propto \left| \left\langle \phi_{lo} \right| \mu^{z} \left| \phi_{up} \right\rangle \right|^{2} &= \left| \left\langle \phi_{lo} \right| g_{N} J_{N}^{z} + g_{\Lambda} J_{\Lambda}^{z} \left| \phi_{up} \right\rangle \right|^{2} \\ &\propto (g_{N} - g_{\Lambda})^{2} \end{aligned}$$

Precise hypernuclear γ-spectroscopy has been established as new frontier in strangeness nuclear physics Impurity nuclear physics

The introduction of 1 (or 2) hyperons in a nucleus may give rise to various changes of the nuclear structure

- changes of the size and of the shape
- changes of the cluster structure
- manifestation of new symmetries
- change of collective motions

study of hypernucleus level schemes and B(E2)

Doppler-shift attenuation method

$$\frac{B(E2;_{\Lambda}^{7}Li:5/2^{+} \to 1/2^{+})}{B(E2;^{6}Li:3^{+} \to 1^{+})} = \frac{3.6 \pm 0.5_{-0.4}^{+0.5} \ e^{2} fm^{4}}{10.9 \pm 0.9 \ e^{2} fm^{4}} \approx \frac{1}{3}$$

B(E2) $\propto r^4 \Rightarrow$ shrinkage of ⁶Li core by ~ 20%

2300

S = -2 systems study is not just a simple extension of what has been done for S = -1 system

new physics items:

- A detailed and consistent understanding of the quark aspect of the baryon-baryon forces in the SU(3) space will not be possible as long as experimental information on the YY channel is not available
- ✤ search for H particle
- neutron star composition

🖛 challenges:

- ♦ (abundant) production of AA-hypernuclei is very difficult
- identification of produced hypersystems is problematic
- \diamond γ -ray measurement in coincidence

Beams of Ions and Antiprotons, October 14-17, 2003, GSI

Observed AA-hypernuclei

- 1963: Danysz et al. $^{10}_{\Lambda\Lambda}Be$ (emulsion)
- 1966: Prowse
- 1991: KEK-E176
- 2001: BNL-E906 $^{4}_{\Lambda\Lambda}H$
- 2001: КЕК-Е373 ⁶ Не
- 2001: KEK-E373

 $\Xi^{-} + {}^{12}C \rightarrow {}^{6}_{\Lambda\Lambda}He^{+4}He^{+t}$

After 40 years!

 $^{10}_{\Lambda\Lambda}Be$

Expected π^- momentum spectrum

The status of the art

Hypernucleus		$B_{\Lambda\Lambda}$ [MeV]	$\Delta B_{\Lambda\Lambda}$ [MeV]
	$^{10}_{\Lambda\Lambda}Be$	17.7 ± 0.4	4.3 ± 0.4
	$^{6}_{\Lambda\Lambda}He$	10.9 ± 0.5	4.7 ± 0.6
	$^{6}_{\Lambda\Lambda}He$	7.25 ± 0.19 ^{+0.18}	1.01 ± 0.20 ^{+0.18}
same event!	$^{13}_{\Lambda\Lambda}B$	27.6 ± 0.7	4.8 ± 0.7
	$^{10}_{\Lambda\Lambda}Be$	8.5 ± 0.7	-4.9 ± 0.7
	$^{10}_{\Lambda\Lambda}Be$	12.33 ^{+0.35} _{-0.21}	

$$B_{\Lambda\Lambda}({}^{A}_{\Lambda\Lambda}Z) = B_{\Lambda}({}^{A}_{\Lambda\Lambda}Z) + B_{\Lambda}({}^{A-1}_{\Lambda}Z)$$
$$\Delta B_{\Lambda\Lambda}({}^{A}_{\Lambda\Lambda}Z) = B_{\Lambda}({}^{A}_{\Lambda\Lambda}Z) - B_{\Lambda}({}^{A-1}_{\Lambda}Z)$$

one can not to interpret $\Delta B_{\Lambda\Lambda}$ as $\Lambda\Lambda$ binding energy because of:

- dynamical change of the core nucleus
- NA spin-spin interaction for non-zero spin of core
- possible excited states

if $\Lambda\Lambda$ - or intermediate Λ -hypernuclei are produced in excited states:

- Q-value is difficult to extract (especially for heavy nuclei)
- nuclear fragments are difficult to identify with usual emulsion technique

new concept required!

decay properties:

?total decay rate

?lifetime measurements

? non-mesonic weak decay modes

? influence of the H-like structure

S = - 2 systems and H-dibaryon states

 $B_{\Lambda\Lambda} = 24 \text{ MeV}$

 $\begin{array}{l} \textit{H} \text{ particle formation can be revealed by} \\ \text{a modification of the energy levels of } \Lambda\Lambda\text{-hypernuclei} \end{array}$

25

$\Xi^- + p \rightarrow \Lambda + \Lambda + 28 \text{ MeV}$

A. Feliciello / 2nd International Workshop on the Future Accelerator Facility for Beams of Ions and Antiprotoms, October 14-17, 2003, GSI – Darmstadt (Germany)

AA-hypernucleus production @ GSI

,

experiment	reaction	device	beam/ target	status
BNL-AGS E885	$(\Xi^{-},^{12}\mathcal{C}) \to \mathcal{A}^{12}\mathcal{B} + n$	neutron detector arrays	₭ beam, diamond target	20000 stopped =-
BNL-AGS E906	2π decays	Cylindrical Detector System	K beam line	few tens 2π decays of $_{\Lambda\Lambda}{}^4H$
KEK-PS E373	(, ⁄≮ ⁺ , ∕≮ ⁺) Ξ	emulsion	(₭,₭)	several hundreds stopped Ξ ⁻
facility	reaction	device	beam / target	Captured Ξ⁻ / day
JPARC	(𝑘²,𝑘)Ξ	spectrometer, $\Delta \Omega$ = 30 msr	8·10 ⁶ ∕s 5 cm ¹² C	< 7000
cold anti- protons	$ \underline{p} \overline{p} \to K \overline{K} \\ K N \to \Xi K $	vertex detector	10° stopped p/s	2000
GSI-HESR	$p \bar{p} \rightarrow \Xi \bar{\Xi}$	vertex detector + γ-spectrometer	£ = 2·10 ³² , thin target, production vertex ≠ decay vertex	~ 3000 ~ 300000 KK trigger (incl. trigger)

<i>Ω-atoms production @ GSI

The PANDA detector

Ge array for hypernuclei detection

- + solid state micro-tracker (diamond or silicon)
 - > compact: thickness ~ 3 cm
 - > high rate capability
 - high resolution
- + capillar (2D) or pixel (3D) detector
- + position sensitive Ge detector (VEGA or AGATA like)
 - high rate capability

32

The Segmented Clover Detector

AGATA (Advanced Gamma-ray Tracking Array)

 180 hexagonal crystals in 3 different, asymmetric shapes grouped in 60 triple-cluster cryostats
 10 pentagonal crystals individually canned
 230 kg of germanium crystals of Ø 8 cm; L : 9 cm
 full sphere with solid angle coverage ~78 % inner-outer radius of 17-26 cm total of 6780 segments

5

6

3

- immersed
 in magnetic field
 exposed to huge
 - hadronic background

33

(1) three 36-fold segmented Ge detectors
 (2) 111 preamplifiers (3) frame support
 (4) digital electronics (5) fiber-optics read-out
 (6) LN₂ dewar (7) target position

hypernucleus spectroscopy and decay Summary

- textbook evidence for the validity of the shell model
- spin-orbit terms in the optical potential
- glue-role of the Λ (nuclear medium effect)
- ► 4 baryon weak interaction $\Lambda \mathcal{N} \rightarrow \mathcal{N} \mathcal{N}$ (validity of $\Delta \mathbf{I} = \frac{1}{2}$ rule)
- low energy AN scattering (short range aspects of the nuclear force)
- $\Lambda\Lambda$ interaction
- search for Hparticle

The fifty-year-old field of strangeness nuclear physics is still alive and has a great discovery potential

- number of exp. physicist involved is growing
- is significative theoretical effort well tuned on exp. data
- 🗅 dedicated beams and apparatus
- main item in several future physics program at new facilities
- By exploiting the potentialities of the new HESR machine a large number of AA-hypernuclei will be produced, allowing a significative step forward in multistrange system knowledge

2013 will be the 50th anniversary of AA-hypernucleus discovery: GSI could successfully celebrate it with a long series of fundamental questions solved