

Hypernuclear studies at FAIR with PANDA

Alessandro Feliciello I.N.F.N. - Sezione di Torino

strangeness nuclear physics: interest

- discovery potential
- the PANDA experiment
 - opportunity for hypernuclear physics
 - the apparatus
 - the technological challenges

Physics output (S=-1)

e p(u e d

A. Feliciello / 18th Int. Conf. on Few-Body Problems in Physics, Santos, Brazil, August 21-26, 2006

(INFN)

A. Feliciello / 18th Int. Conf. on Few-Body Problems in Physics, Santos, Brazil, August 21-26, 2006

S = -2 systems study is not just a simple extension of what has been done for S = -1 system 5

new physics items:

- A detailed and consistent understanding of the quark aspect of the baryon-baryon forces in the SU(3) space will not be possible as long as experimental information on the YY channel is not available
- search for *H* particle
- \diamond existence of S = -2 (deeply) bound \overline{K} states
- experimental challenges:
 - ♦ (abundant) production of ∧∧-hypernuclei is very difficult
 - identification of produced hyperfragments is problematic
 - γ-ray measurement in coincidence

single event analysis

1-26, 2006	reference (year)	hyper nucleus	Β _{ΛΛ} [MeV]	ΔB _{ΛΛ} [MeV]	notes	
, August 2	M. Danysz <i>et al.</i> , <i>Nucl. Phys.</i> 49 (1963) 121	$^{10}_{\Lambda\Lambda}Be$	17.7 ± 0.4	4.3 ± 0.4	emulsion exp.; Dalitz' reanalysis	
) / 18 th Int. Conf. on Few-Body Problems in Physics, Santos, Brazil	D. Prowse <i>et al.</i> , <i>Phys. Rev. Lett.</i> 17 (1966) 782	6/ _{ΛΛ} He ×	10.9 ± 0.5	4.6 ± 0.5	emulsion exp.; Dalitz' criticism	
	S. Aoki <i>et al.,</i> <i>Prog. Theor. Phys.</i> 85 (1991) 951 S. Aoki <i>et al.,</i> <i>Prog. Theor. Phys.</i> 85 (1991) 1287	$^{13}_{\Lambda\Lambda}B$	27.6 ± 0.7	4.8 ± 0.7	KEK-E176 emulsion-counter hybrid exp. (*)	me ent
		$^{10}_{\Lambda\Lambda}Be$	8.5 ± 0.7	-4.9 ± 0.7		sal ev
	J.K. Ahn <i>et al.,</i> <i>Phys. Rev. Lett.</i> 87 (2001) 132504	$^{4}_{\Lambda\Lambda}H$			BNL-E906 "mass production"	
	H. Takahashi <i>et al.</i> , <i>Phys. Rev. Lett.</i> 87 (2001) 212501	⁶ Не	$7.25 \pm 0.19^{+0.18}_{-0.11}$	$1.01 \pm 0.20^{+0.18}_{-0.11}$	KEK-E373 emulsion-counter hybrid exp.	
	H. Takahashi <i>et al.</i> , <i>Nucl. Phys.</i> A 721 (2003) 951c	$^{10}_{\Lambda\Lambda}Be$	12.33 ^{+0.35}		KEK-E373 emulsion-counter	
A. Feliciello	(*) see: C.B. Dover, D.J. Millener, A. Gal and D.H. Davis, <i>Phys. Rev.</i> C 44 (1991) 1905 $\Delta B_{\Lambda\Lambda}({}^{A}_{\Lambda\Lambda}Z) = B_{\Lambda}({}^{A}_{\Lambda\Lambda}Z) + B_{\Lambda}({}^{A-I}_{\Lambda}Z)$					

 $\Delta B_{\Lambda\Lambda}$ can not be interpret as $\Lambda\Lambda$ binding energy because of:

- dynamical change of the core nucleus
- NA spin-spin interaction for non-zero spin of core
- possible excited states

new concept required!

- if $\Lambda\Lambda$ or intermediate Λ -hypernuclei are produced in excited states:
- Q-value is difficult to extract (especially for heavy nuclei)
- nuclear fragments are difficult to identify with usual emulsion technique

Key Technical Features

- Cooled beams
- Rapidly cycling superconducting magnets
- Parallel Operation

Primary Beams

- 10¹²/s; 1.5-2 AGeV; ²³⁸U²⁸⁺
- Factor 100-1000 over present intensity

10

- 2(4)x10¹³/s 30 GeV protons
- 10^{10} /s 238 U $^{92+}$ up to 35 AGeV
- up to 90 GeV protons

Secondary Beams

- Broad range of radioactive beams up to 1.5 - 2 AGeV; up to factor 10 000 in intensity over present
- Antiprotons 0 30 GeV

Storage and Cooler Rings

- Radioactive beams
- e⁻ A (or Antiproton-A) collider
- 10¹¹ stored and cooled 0.8 - 14.5 GeV antiprotons
- Polarized antiprotons (?)

The **PANDA** apparatus

E P(U E d

A. Feliciello / 18th Int. Conf. on Few-Body Problems in Physics, Santos, Brazil, August 21-26, 2006

The PANDA physics program

e p(u e d

Medium effect

12

partial restoration of the chiral symmetry?

$\Xi^- + p \rightarrow \Lambda + \Lambda + 28 \text{ MeV}$

ΛΛ-hypernucleus production @ PANDA

A. Feliciello / 18th Int. Conf. on Few-Body Problems in Physics, Santos, Brazil, August 21-26, 2006

(INFN)

Λ- vs. ΛΛ-hypernucleus identification

How to identify a ΛΛ-hypernucleus

sequential pionic decay ${}^{\mathrm{A}}_{\Lambda\Lambda}Z \rightarrow {}^{\mathrm{A'}}_{\Lambda}Z' \rightarrow {}^{\mathrm{A''}}_{\Lambda}Z''$ ллA π ۸B π

Expected *π*⁻ momentum spectrum

18

The hyper **PANDA** apparatus

INFN

Do HPGe crystals work in (strong) magnetic field?

JRA6

INFN

JRA6

X - COOLER ~ II, ~ AMETEC, ~ ORTEC

- The fifty-year-old field of strangeness nuclear physics is still alive and has a great discovery potential
 - number of (young) experimental physicist involved is increasing
 - dedicated beams and apparatus
 - main item in several future physics program at new facilities
 - significative theoretical effort well tuned on exp. data
- By exploiting the potentialities of the new HESR machine a large number of AA-hypernuclei will be produced, allowing a significative step forward in multi-strange systems knowledge
- 2013 will be the 50th anniversary of <u>AA-hypernucleus discovery</u>: FAIR could successfully celebrate it with a long series of interesting results

(NFN

