

of the particle acceleration in compact astrophysical objects

V.S.Beskin

of the b particle acceleration in compact astrophysical objects

V.S.Beskin

of the bu particle acceleration in compact astrophysical objects

V.S.Beskin

of the bul particle acceleration in compact astrophysical objects

V.S.Beskin

of the bulk particle acceleration in compact astrophysical objects

V.S.Beskin

What do we see

Active Galactic Nuclei (AGN) M ~ $(10^{6}-10^{9})M_{\odot}$, R ~ $(10^{10}-10^{13})$ cm

Active Galactic Nuclei (AGN) M ~ $(10^{6}-10^{9})M_{\odot}$, R ~ $(10^{10}-10^{13})$ cm

Active Galactic Nuclei (model)

Young Stellar Objects (YSO) M ~ $10M_{\odot}$, R~ 10^{10} cm

Young Stellar Objects (YSO) M ~ $10M_{\odot}$, R~ 10^{10} cm

Jets from Young Stars

HST · WFPC2

PRC95-24a · ST Scl OPO · June 6, 1995 C. Burrows (ST Scl), J. Hester (AZ State U.), J. Morse (ST Scl), NASA

Young Stellar Objects (model)

Microquasars (μ QSO) M ~ (3–10)M_☉, R ~ 10⁶cm

Microquasars (model)

What do we think

The same mechanism?

The same mechanism?

- Thermal (gas pressure)?
- Radiative (radiation pressure)?
- Electromagnetic (Ampere force)?

Main idea

Central engine is an unipolar inductor

Unipolar Inductor

- Electric circuit is to be touched to the sphere at different latitudes.
- Electric circuit is to rotate with the angular velocity Ω which differs from the angular velocity of a sphere.
- The energy source is the kinetic energy of the rotation.
- EMF does not result from the Faraday effect.

$$W_{\rm tot} = IU$$

For the central engine to work

1. regular poloidal magnetic field, 2. rotation (inductive electric field *E*, EMF *U*), 3. longitudinal current *I* (toroidal magnetic field B_{φ}).

An example – radio pulsars

V.Beskin – N.Vlahakis, Email communication (2007)

>*It's so nice your results are in agreement with our* > *analytical calculations.*

Yes, it is nice that the situation is pretty clear now.

Two first steps only

- Force-free
- MHD σ

λ

 $l_{\rm a}$

- Two-fluid
- Radiation drag
- •
- •
- <u>Reality</u>

<u>Magnetization parameter</u> σ (maximum bulk Lorentz-factor)

$$\sigma = \frac{\Omega^2 \Psi_{\rm tot}}{8\pi^2 c^2 \mu \eta}$$

 $r_{\rm F} = R_{\rm L} \sigma^{1/3}$

Radio pulsars $10^3 - 10^5$ AGNs???GRBs $10^2 - 10^4$ YSOs $10^{-3} - 10^{-7}$

<u>Multiplicity parameter</u> λ $\lambda = \frac{n^{(\text{lab})}}{----}$ n_{GJ} $\rho_{\rm GJ} = -\frac{\mathbf{\Omega} \cdot \mathbf{B}}{2\pi c}$

 Radio pulsars
 $10^3 - 10^5$

 AGNs
 ???

 GRBs
 $10^{13} - 10^{14}$

What a problem?

Divergence of a flow

Relativistic motion

Rotation

Poynting dominated flow near the origin

Divergence of a flow (4-5 order of magnitude)

Magnetized Wind

• Magnetization parameter $\sigma = e \Omega \Psi_{tot} / \lambda mc^3 >> 1$

 $(\gamma = \sigma \text{ corresponds to full conversion})$

• Position of the fast magnetosonic surface $r_{\rm E} = R_{\rm L} \sigma^{1/3} \sin^{-1/3} \theta$

Disturbance of the poloidal

magnetic field at $r = r_F$

$$\delta \Psi/\Psi = \sigma^{-2/3}$$

Nonrelativistic

F

1

2

3

З

2S

 $r_{\rm F} = R_{\rm L} \sigma^{1/3} \sin^{-1/3} \theta$

Relativistic

T.Sakurai. A&A, **152**, 121 (1985)

N.Bucciantini, T.Thompson, J.Arons, E.Quataert, L.Del Zanna. MNRAS, **368**, 1717 (2006)

Divergence of a flow (4-5 order of magnitude)

Divergence of a flow (4-5 order of magnitude) The flow is to be transonic

Divergence of a flow (4-5 order of magnitude) The flow is to be transonic

- Current *I* is determined by the critical conditions, not by the outer load
- NOT the 'magnetic tower'

Energy Losses

 $W_{\rm tot} = IU$

 $(I = I_{GJ}$ for relativistic flow)

$$W_{\rm tot} \approx \left(\frac{\Omega R_0}{c}\right)^2 B_0^2 R_0^2 c$$

Magnetic tower

Wind + diff. rotation

D.Lynden-Bell. MNRAS, **279**, 389, (1996)

Y.Kato, M.R.Hayashi, R.Matsumoto. ApJ, **600**, 338 (2004)

And in the laboratory

PHYSICS OF PLASMAS 16, 041005 (2009)

Astrophysical jets: Observations, numerical simulations, and laboratory experiments

P. M. Bellan,¹ M. Livio,² Y. Kato,³ S. V. Lebedev,⁴ T. P. Ray,⁵ A. Ferrari,⁶ P. Hartigan,⁷ A. Frank,⁸ J. M. Foster,⁹ and P. Nicolaï¹⁰

The role of the divergence

M. M.Romanova, G. V.Ustyugova, A. V. Koldoba, R. V. E. Lovelace. MNRAS, **399**, 1802 (2009)

Relativistic motion

$$\sigma \sim \frac{1}{\lambda} \left(\frac{W_{\text{tot}}}{W_{\text{A}}}\right)^{1/2}$$
$$W_{\text{A}} = m_{\text{e}}^2 c^5 / e^2 \approx 10^{17} \text{ erg s}^{-1}$$

Poynting dominated flow near the origin

Far from the origin $E \sim B$

Disturbance of the monopole magnetic field

V.S.Beskin & R.R.Rafikov. MNRAS, **313**, 344, 2000

For electric current

 $I = I_{\rm GJ} \left(1 - h \right)$

an exact solution is

 $\Psi = \Psi_0 [1 - \cos\theta + h(\Omega r/c)^2 \sin^2\theta \cos\theta]$

Light surface for h < 0 at

 $r\sin\theta = (2h)^{-1/4} R_{\rm L}$

$$\begin{split} -\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}(\zeta\sin\theta) &= 2(\eta^+ - \eta^-) - 2\left[\left(\lambda - \frac{1}{2}\cos\theta\right)\xi_r^+ - \left(\lambda + \frac{1}{2}\cos\theta\right)\xi_r^-\right], \\ &\quad 2(\eta^+ - \eta^-) + \frac{\partial}{\partial r}\left(r^2\frac{\partial\delta}{\partial r}\right) + \frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\delta}{\partial\theta}\right) = 0, \\ &\quad \frac{\partial\zeta}{\partial r} = \frac{2}{r}\left[\left(\lambda - \frac{1}{2}\cos\theta\right)\xi_\theta^+ - \left(\lambda + \frac{1}{2}\cos\theta\right)\xi_\theta^-\right], \\ &\quad \frac{\varepsilon}{\sin\theta}\frac{\partial^2 f}{\partial r^2} - \frac{\varepsilon}{r^2}\frac{\partial}{\partial\theta}\left(\frac{1}{\sin\theta}\frac{\partial f}{\partial\theta}\right) = 2\frac{\Omega}{rc}\left[\left(\lambda - \frac{1}{2}\cos\theta\right)\xi_\varphi^+ - \left(\lambda + \frac{1}{2}\cos\theta\right)\xi_\varphi^-\right], \\ &\quad \frac{\partial}{\partial r}\left(\xi_\theta^+\gamma^+\right) + \frac{\xi_\theta^+\gamma^+}{r} = 4\lambda\sigma\left(-\frac{1}{r}\frac{\partial\delta}{\partial\theta} + \frac{\zeta}{r} - \frac{\sin\theta}{r}\xi_r^+ + \frac{c}{\Omega r^2}\xi_\varphi^+\right), \\ &\quad \frac{\partial}{\partial r}\left(\xi_\theta^-\gamma^-\right) + \frac{\xi_\theta^-\gamma^-}{r} = -4\lambda\sigma\left(-\frac{1}{r}\frac{\partial\delta}{\partial\theta} + \frac{\zeta}{r} - \frac{\sin\theta}{r}\xi_r^- + \frac{c}{\Omega r^2}\xi_\varphi^-\right), \\ &\quad \frac{\partial}{\partial r}\left(\gamma^+\right) = 4\lambda\sigma\left(-\frac{\partial\delta}{\partial r} - \frac{\sin\theta}{r}\xi_\theta^+\right), \\ &\quad \frac{\partial}{\partial r}\left(\xi_\varphi^+\gamma^+\right) + \frac{\xi_\varphi^+\gamma^+}{r} = 4\lambda\sigma\left(-\varepsilon\frac{c}{\Omega r\sin\theta}\frac{\partial f}{\partial r} - \frac{c}{\Omega r^2}\xi_\theta^+\right), \\ &\quad \frac{\partial}{\partial r}\left(\xi_\varphi^-\gamma^-\right) + \frac{\xi_\varphi^-\gamma^-}{r} = -4\lambda\sigma\left(-\varepsilon\frac{c}{\Omega r\sin\theta}\frac{\partial f}{\partial r} - \frac{c}{\Omega r^2}\xi_\theta^-\right). \end{split}$$

Properties

• Current sheet $\delta r \sim R_L/\lambda$

• Acceleration results from the motion perpendicular to magnetic field lines, $v_{\theta} \sim v_{r}$

• Particle energy $\gamma \sim \sigma$

Comment for TeV Binaries

What was done

Bulk particle acceleration

<u>Grad – Shafranov Approach</u>

In general case 2D axisymmetric stationary structure of the flow is determined by the second order partial differential equation containing invariants as free functions.

<u>Full Version of the Grad – Shafranov</u> <u>Equation in the Kerr Metric</u>

$$\begin{split} A \left[\frac{1}{\alpha} \nabla_k \left(\frac{1}{\alpha \varpi^2} \nabla^k \Psi \right) + \frac{1}{\alpha^2 \varpi^2 (\nabla \Psi)^2} \frac{\nabla^i \Psi \cdot \nabla^k \Psi \cdot \nabla_i \nabla_k \Psi}{D} \right] \\ + \frac{1}{\alpha^2 \varpi^2} \nabla'_k A \cdot \nabla^k \Psi - \frac{A}{\alpha^2 \varpi^2 (\nabla \Psi)^2} \frac{1}{2D} \nabla'_k F \cdot \nabla^k \Psi \\ + \frac{\Omega_F - \omega}{\alpha^2} (\nabla \Psi)^2 \frac{d\Omega_F}{d\Psi} + \frac{64\pi^4}{\alpha^2 \varpi^2} \frac{1}{2\mathcal{M}^2} \frac{\partial}{\partial \Psi} \left(\frac{G}{A} \right) \\ - 16\pi^3 \mu n \frac{1}{\eta} \frac{d\eta}{d\Psi} - 16\pi^3 n T \frac{ds}{d\Psi} = 0, \end{split}$$

Algebraic Relations

$$\frac{I}{2\pi} = \frac{\alpha^2 L - (\Omega_{\rm F} - \omega) \varpi^2 (E - \omega L)}{\alpha^2 - (\Omega_{\rm F} - \omega)^2 \varpi^2 - \mathcal{M}^2},$$
$$\gamma = \frac{1}{\alpha \mu \eta} \frac{\alpha^2 (E - \Omega_{\rm F} L) - \mathcal{M}^2 (E - \omega L)}{\alpha^2 - (\Omega_{\rm F} - \omega)^2 \varpi^2 - \mathcal{M}^2},$$
$$u_{\hat{\varphi}} = \frac{1}{\varpi \mu \eta} \frac{(E - \Omega_{\rm F} L) (\Omega_{\rm F} - \omega) \varpi^2 - L \mathcal{M}^2}{\alpha^2 - (\Omega_{\rm F} - \omega)^2 \varpi^2 - \mathcal{M}^2}.$$

91

Algebraic Relations

$$\frac{I}{2\pi} = c\eta_{\rm n} \frac{L_{\rm n} - \Omega_{\rm F} \varpi^2}{1 - \mathcal{M}^2},$$

$$v_{\varphi} = \frac{1}{\varpi} \frac{\Omega_{\rm F} \varpi^2 - L_{\rm n} \mathcal{M}^2}{1 - \mathcal{M}^2},$$

Subsonic flow

$$v_{\varphi} = \Omega_{\rm F} r \sin\theta$$
$$v_{\varphi} = L / r \sin\theta, v_{\rm p} \sim \Omega_{\rm F} r_{\rm F}$$

• Supersonic flow

The origin of an acceleration is a centrifugal force

Inside the critical surfaces the magnetic field plays a role of a sling, $\Omega = \Omega_F$, so that

$$v_{\varphi}(r_{\rm F}) = \Omega_{\rm F} r_{\rm F} \sim (2E_{\rm n})^{1/2} = v_{\rm inf}$$

 $v_{\rm p}(r_{\rm F}) \sim v_{\rm inf}$

Simple asymptotic solutions

Grad-Shafranov equation is the force-balance one. For magnetically dominated case

 $\rho_{\rm e} \boldsymbol{E} + \boldsymbol{j} \times \boldsymbol{B}/c \sim 0.$

After some algebra

$$\frac{S/c}{R_c} = \frac{1}{4\pi} \nabla \left(B_{\varphi}^2 - E^2 \right) + \frac{1}{4\pi} \nabla \left(B_p^2 \right)$$

If one can neglect the curvature R_{c} , then

 $B_{\phi}^2 - E^2 \sim B_{\phi}^2 / \gamma^2$ and $B_{\phi}^2 = x^2 B_{p}^2$, so we return to

$$\gamma = x$$

The role of the curvature

$$\frac{S/c}{R_{\rm c}} = \frac{1}{4\pi} \nabla \left(B_{\varphi}^2 - E^2 \right) + \frac{1}{4\pi} \nabla \left(B_{\rm p}^2 \right)$$

If one cannot neglect the curvature R_c , then $S \sim (c/4\pi)B_{\phi}^2$, and one can neglect the last term (Beskin, Zakamska, Sol, MNRAS, **347**, 587, 2004).

It gives

$$\gamma = (R_c / \varpi)^{1/2}$$

Magnetized Wind

• Magnetization parameter $\sigma = e \Omega \Psi_{tot} / \lambda mc^3 >> 1$

 $(\gamma = \sigma \text{ corresponds to full conversion})$

• Position of the fast magnetosonic surface $r_{\rm E} = R_{\rm L} \sigma^{1/3} \sin^{-1/3} \theta$

• Disturbance of the poloidal magnetic field at $r = r_{\rm F}$

 $\delta \Psi/\Psi = \sigma^{-2/3}$

No collimation, no particle acceleration outside $r_{\rm F}$

Numerical calculations (S.V.Bogovalov, A&A, **371**, 1155, 2001)

r

Parabolic magnetic field

(V.S.Beskin & E.E.Nokhrina, MNRAS. **367**. 375. 2006)

- FMS position $r_{\rm F} = R_{\rm L} (\sigma/\theta)^{1/2}$
- Lorentz-factor varies from $\gamma_F = \gamma_{in}$ at radial distance $x = \gamma_{in}$ to $\gamma_F = \sigma^{1/3}$ at $x = \sigma^{1/3}$
- For $z > \sigma^{2/3}R_L$ the flow becomes 1D (cylindrical)

J.McKinney, MNRAS, 368,1561 (2006)

R. Narayan, J.McKinney, A.F.Farmer, MNRAS, **375**, 548 (2006)

Central core

Central core $r_{\rm core} = \gamma_{\rm in} R_{\rm L}$ $B_{\rm min} = B(R_{\rm L})/\sigma\gamma_{\rm in}$, $\Psi_{\rm core} = (\gamma_{\rm in}/\sigma)$ $\Psi_{\rm 0}$ $B_{\rm ext}$ B B_{\min} r $\gamma_{\rm in} R_{\rm I}$

Yu.Lyubarsky, ApJ. **698**, 1570, 2009

V.S.Beskin, E.E.Nokhrina, MNRAS, **397**, 1486, 2009

Central core

S.Komissarov, M.Barkov, N.Vlahakis, A.Königl, MNRAS, **380**, 51, 2007

O.Porth, Ch.Fendt, Z.Meliani,B.Vaidya. ApJ (in press) (2011)

Conclusion

- Effective $(\gamma = x)$ acceleration takes place for strong collimation only (parabolic or stronger)
- Ineffective acceleration for weak collimation (parabolic or weaker)
- Effective particle acceleration takes place only if

 $\boldsymbol{\varpi} \thicksim \boldsymbol{\sigma} \boldsymbol{R}_L$

- Effective particle acceleration is possible only if the curvature plays no role
- External media is necessary