Features of the particle acceleration in compact astrophysical objects

V.S.Beskin

Lebedev Physical Institute, Moscow

Features
 of the b particle acceleration in compact astrophysical objects

V.S.Beskin

Lebedev Physical Institute, Moscow

Features
 of the bu particle acceleration in compact astrophysical objects

V.S.Beskin

Lebedev Physical Institute, Moscow

Features
 of the bul particle acceleration in compact astrophysical objects

V.S.Beskin

Lebedev Physical Institute, Moscow

Features
 of the bulk particle acceleration
 in compact astrophysical objects

V.S.Beskin

Lebedev Physical Institute, Moscow

Fusion \& Astrophysics

Fusion \& Astrophysics

Fusion \& Astrophysics

What do we see

Active Galactic Nuclei (AGN)
$\mathrm{M} \sim\left(10^{6}-10^{9}\right) \mathrm{M}_{\odot}, \quad \mathrm{R} \sim\left(10^{10}-10^{13}\right) \mathrm{cm}$

Active Galactic Nuclei (AGN)

$$
\mathrm{M} \sim\left(10^{6}-10^{9}\right) \mathrm{M}_{\odot}, \quad \mathrm{R} \sim\left(10^{10}-10^{13}\right) \mathrm{cm}
$$

Active Galactic Nuclei (model)

Young Stellar Objects (YSO) $\mathrm{M} \sim 10 \mathrm{M}_{\odot}, \mathrm{R} \sim 10^{10} \mathrm{~cm}$

Young Stellar Objects (YSO) $\mathrm{M} \sim 10 \mathrm{M}_{\odot}, \mathrm{R} \sim 10^{10} \mathrm{~cm}$

PRC95-24a - ST Scl OPO - June 6, 1995
C. Burrows (ST Scl), J. Hester (AZ State U.), J. Morse (ST Scl), NASA

Young Stellar Objects (model)

Diagram of HH 30 Circumstellar Disk \& Jet

Microquasars ($\mu \mathrm{QSO}$) $\mathrm{M} \sim(3-10) \mathrm{M}_{\odot}, \mathrm{R} \sim 10^{6} \mathrm{~cm}$

Microquasars (model)

What do we think

The same mechanism?

The same mechanism?

Thermal (gas pressure)?

Radiative (radiation pressure)?

Electromagnetic (Ampere force)?

Main idea

Central engine is
an unipolar inductor

Unipolar Inductor

- Electric circuit is to be touched to the sphere at different latitudes.
- Electric circuit is to rotate with the angular velocity Ω which differs from the angular velocity of a sphere.
- The energy source is the kinetic energy of the rotation.
- EMF does not result from the Faraday effect.

$$
W_{\mathrm{tot}}=I U
$$

For the central engine to work

1.regular poloidal magnetic field, 2. rotation (inductive electric field \boldsymbol{E}, EMF U), 3. longitudinal current I (toroidal magnetic field B_{φ}).

An example - radio pulsars

V.Beskin - N.Vlahakis, Email communication (2007)

>It's so nice your results are in agreement with our
> analytical calculations.

Yes, it is nice that the situation is pretty clear now.

Two first steps only

- Force-free
- MHD
σ
- Two-fluid λ
- Radiation drag l_{a}
- Reality

Magnetization parameter σ

(maximum bulk Lorentz-factor)

$$
\begin{gathered}
\sigma=\frac{\Omega^{2} \Psi_{\mathrm{tot}}}{8 \pi^{2} c^{2} \mu \eta} \\
r_{\mathrm{F}}=R_{\mathrm{L}} \sigma^{1 / 3}
\end{gathered}
$$

Radio pulsars

$$
\begin{gathered}
10^{3}-10^{5} \\
? ? ? \\
10^{2}-10^{4} \\
10^{-3}-10^{-7}
\end{gathered}
$$

AGNs
GRBs
YSOs

Multiplicity parameter λ

$$
\lambda=\frac{n^{(\mathrm{lab})}}{n_{\mathrm{GJ}}}
$$

$$
\rho_{\mathrm{GJ}}=-\frac{\boldsymbol{\Omega} \cdot \mathbf{B}}{2 \pi c}
$$

Radio pulsars

$$
\begin{aligned}
& 10^{3}-10^{5} \\
& ? ? ? \\
& 10^{13}-10^{14}
\end{aligned}
$$

AGNs
GRBs

What a problem?

Specific features

Divergence of a flow
Relativistic motion
Rotation
Poynting dominated flow near the origin

Specific features

Divergence of a flow (4-5 order of magnitude)

Magnetized Wind

- Magnetization parameter

$$
\sigma=e \Omega \Psi_{\mathrm{tot}} / \lambda m c^{3} \gg 1
$$

($\gamma=\sigma$ corresponds to full conversion)

- Position of the fast magnetosonic surface

$$
r_{\mathrm{F}}=R_{\mathrm{L}} \sigma^{1 / 3} \sin ^{-1 / 3} \theta
$$

- Disturbance of the poloidal magnetic field at $r=r_{\mathrm{F}}$

$$
\delta \Psi / \Psi=\sigma^{-2 / 3}
$$

Nonrelativistic
Relativistic

$$
r_{\mathrm{F}}=R_{\mathrm{L}} \sigma^{1 / 3} \sin ^{-1 / 3} \theta
$$

T.Sakurai.

A\&A, 152, 121
(1985)
N.Bucciantini, T.Thompson, J.Arons, E.Quataert, L.Del Zanna.

MNRAS, 368, 1717 (2006)

Magnetized Wind (Acceleration)

For $r<r_{\mathrm{F}}$

$$
\gamma \sim x=\Omega r \sin \theta / c
$$

Fast Magnetosonic Surface

$$
\gamma\left(r_{\mathrm{F}}\right)=\sigma^{1 / 3} \sin ^{2 / 3} \theta(\text { not } \sigma)
$$

- For $r \gg r_{\mathrm{F}}$

$$
\Psi / \Psi_{0}=1-\cos \theta+\sigma^{-2 / 3} \ln ^{1 / 3}\left(r / r_{\mathrm{F}}\right)
$$

$$
\gamma \sim \sigma^{1 / 3} \ln ^{1 / 3}\left(r / r_{\mathrm{F}}\right)
$$

Specific features

Divergence of a flow (4-5 order of magnitude)

Specific features

Divergence of a flow (4-5 order of magnitude)
The flow is to be transonic

$\underline{\text { Specific features }}$

Divergence of a flow (4-5 order of magnitude)
The flow is to be transonic

- Current I is determined by the critical conditions, not by the outer load

NOT the 'magnetic tower'

Energy Losses

$$
W_{\text {tot }}=I U
$$

$\left(I=I_{\mathrm{GJ}}\right.$ for relativistic flow)

$$
W_{\mathrm{tot}} \approx\left(\frac{\Omega R_{0}}{c}\right)^{2} B_{0}^{2} R_{0}^{2} c
$$

Magnetic tower

Wind + diff. rotation

D.Lynden-Bell. MNRAS,

279, 389, (1996)
Y.Kato, M.R.Hayashi, R.Matsumoto. ApJ, 600, 338 (2004)

And in the laboratory

PHYSICS OF PLASMAS 16, 041005 (2009)
Astrophysical jets: Observations, numerical simulations, and laboratory experiments
P. M. Bellan, ${ }^{1}$ M. Livio, ${ }^{2}$ Y. Kato, ${ }^{3}$ S. V. Lebedev, ${ }^{4}$ T. P. Ray, ${ }^{5}$ A. Ferrari, ${ }^{6}$ P. Hartigan, ${ }^{7}$ A. Frank, ${ }^{8}$ J. M. Foster, ${ }^{9}$ and P. Nicolai ${ }^{10}$

The role of the divergence

M. M.Romanova,
G. V.Ustyugova,
A. V. Koldoba,
R. V. E. Lovelace. MNRAS, 399, 1802 (2009)

Specific features

Relativistic motion

$$
\begin{gathered}
\sigma \sim \frac{1}{\lambda}\left(\frac{W_{\text {tot }}}{W_{\mathrm{A}}}\right)^{1 / 2} \\
W_{\mathrm{A}}=m_{\mathrm{e}}^{2} c^{5} / e^{2} \approx 10^{17} \mathrm{erg} \mathrm{~s}^{-1}
\end{gathered}
$$

$\underline{\text { Specific features }}$

Poynting dominated flow near the origin

Far from the origin $E \sim B$

Disturbance of the monopole magnetic field

V.S.Beskin \& R.R.Rafikov.

MNRAS, 313, 344, 2000

For electric current
$I=I_{\mathrm{GJ}}(1-h)$
an exact solution is
$\Psi=\Psi_{0}\left[1-\cos \theta+h(\Omega r / c)^{2} \sin ^{2} \theta \cos \theta\right]$
Light surface for $h<0$ at
$r \sin \theta=(2 h)^{-1 / 4} R_{\mathrm{L}}$

$$
\begin{array}{r}
-\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}(\zeta \sin \theta)=2\left(\eta^{+}-\eta^{-}\right)-2\left[\left(\lambda-\frac{1}{2} \cos \theta\right) \xi_{r}^{+}-\left(\lambda+\frac{1}{2} \cos \theta\right) \xi_{r}^{-}\right] \\
2\left(\eta^{+}-\eta^{-}\right)+\frac{\partial}{\partial r}\left(r^{2} \frac{\partial \delta}{\partial r}\right)+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \delta}{\partial \theta}\right)=0, \\
\frac{\partial \zeta}{\partial r}=\frac{2}{r}\left[\left(\lambda-\frac{1}{2} \cos \theta\right) \xi_{\theta}^{+}-\left(\lambda+\frac{1}{2} \cos \theta\right) \xi_{\theta}^{-}\right], \\
\frac{\varepsilon}{\sin \theta} \frac{\partial^{2} f}{\partial r^{2}}-\frac{\varepsilon}{r^{2}} \frac{\partial}{\partial \theta}\left(\frac{1}{\sin \theta} \frac{\partial f}{\partial \theta}\right)=2 \frac{\Omega}{r c}\left[\left(\lambda-\frac{1}{2} \cos \theta\right) \xi_{\varphi}^{+}-\left(\lambda+\frac{1}{2} \cos \theta\right) \xi_{\varphi}^{-}\right], \\
\frac{\partial}{\partial r}\left(\xi_{\theta}^{+} \gamma^{+}\right)+\frac{\xi_{\theta}^{+} \gamma^{+}}{r}=4 \lambda \sigma\left(-\frac{1}{r} \frac{\partial \delta}{\partial \theta}+\frac{\zeta}{r}-\frac{\sin \theta}{r} \xi_{r}^{+}+\frac{c}{\Omega r^{2}} \xi_{\varphi}^{+}\right), \\
\frac{\partial}{\partial r}\left(\xi_{\theta}^{-} \gamma^{-}\right)+\frac{\xi_{\theta}^{-} \gamma^{-}}{r}=-4 \lambda \sigma\left(-\frac{1}{r} \frac{\partial \delta}{\partial \theta}+\frac{\zeta}{r}-\frac{\sin \theta}{r} \xi_{r}^{-}+\frac{c}{\Omega r^{2}} \xi_{\varphi}^{-}\right), \\
\frac{\partial}{\partial r}\left(\gamma^{+}\right)=4 \lambda \sigma\left(-\frac{\partial \delta}{\partial r}-\frac{\sin \theta}{r} \xi_{\theta}^{+}\right), \\
\frac{\partial}{\partial r}\left(\gamma^{-}\right)=-4 \lambda \sigma\left(-\frac{\partial \delta}{\partial r}-\frac{\sin \theta}{r} \xi_{\theta}^{-}\right), \\
\frac{\partial}{\partial r}\left(\xi_{\varphi}^{+} \gamma^{+}\right)+\frac{\xi_{\varphi}^{+} \gamma^{+}}{r}=4 \lambda \sigma\left(-\varepsilon \frac{c}{\Omega r \sin \theta} \frac{\partial f}{\partial r}-\frac{c}{\Omega r^{2}} \xi_{\theta}^{+}\right), \\
\frac{\partial}{\partial r}\left(\xi_{\varphi}^{-} \gamma^{-}\right)+\frac{\xi_{\varphi}^{-} \gamma^{-}}{r}=-4 \lambda \sigma\left(-\varepsilon \frac{c}{\Omega r \sin \theta} \frac{\partial f}{\partial r}-\frac{c}{\Omega r^{2}} \xi_{\theta}^{-}\right)
\end{array}
$$

Properties

- Current sheet $\delta \mathrm{r} \sim \mathrm{R}_{\mathrm{L}} / \lambda$
- Acceleration results from the motion perpendicular to magnetic field lines, $v_{\theta} \sim v_{r}$
- Particle energy $\gamma \sim \sigma$

Comment for TeV Binaries

What was done

Bulk particle acceleration

Grad - Shafranov Approach

In general case 2D axisymmetric stationary structure of the flow is determined by the second order partial differential equation containing invariants as free functions.

Full Version of the Grad - Shafranov Equation in the Kerr Metric

$$
\begin{aligned}
& A\left[\frac{1}{\alpha} \nabla_{k}\left(\frac{1}{\alpha \varpi^{2}} \nabla^{k} \Psi\right)+\frac{1}{\alpha^{2} \varpi^{2}(\nabla \Psi)^{2}} \frac{\nabla^{i} \Psi \cdot \nabla^{k} \Psi \cdot \nabla_{i} \nabla_{k} \Psi}{D}\right] \\
& +\frac{1}{\alpha^{2} \varpi^{2}} \nabla_{k}^{\prime} A \cdot \nabla^{k} \Psi-\frac{A}{\alpha^{2} \varpi^{2}(\nabla \Psi)^{2}} \frac{1}{2 D} \nabla_{k}^{\prime} F \cdot \nabla^{k} \Psi \\
& \quad+\frac{\Omega_{\mathrm{F}}-\omega}{\alpha^{2}}(\nabla \Psi)^{2} \frac{\mathrm{~d} \Omega_{\mathrm{F}}}{\mathrm{~d} \Psi}+\frac{64 \pi^{4}}{\alpha^{2} \varpi^{2}} \frac{1}{2 \mathcal{M}^{2}} \frac{\partial}{\partial \Psi}\left(\frac{G}{A}\right) \\
& \quad-16 \pi^{3} \mu n \frac{1}{\eta} \frac{\mathrm{~d} \eta}{\mathrm{~d} \Psi}-16 \pi^{3} n T \frac{\mathrm{~d} s}{\mathrm{~d} \Psi}=0,
\end{aligned}
$$

Algebraic Relations

$$
\begin{gathered}
\frac{I}{2 \pi}=\frac{\alpha^{2} L-\left(\Omega_{\mathrm{F}}-\omega\right) \varpi^{2}(E-\omega L)}{\alpha^{2}-\left(\Omega_{\mathrm{F}}-\omega\right)^{2} \varpi^{2}-\mathcal{M}^{2}} \\
\gamma=\frac{1}{\alpha \mu \eta} \frac{\alpha^{2}\left(E-\Omega_{\mathrm{F}} L\right)-\mathcal{M}^{2}(E-\omega L)}{\alpha^{2}-\left(\Omega_{\mathrm{F}}-\omega\right)^{2} \varpi^{2}-\mathcal{M}^{2}} \\
u_{\hat{\varphi}}=\frac{1}{\varpi \mu \eta} \frac{\left(E-\Omega_{\mathrm{F}} L\right)\left(\Omega_{\mathrm{F}}-\omega\right) \varpi^{2}-L \mathcal{M}^{2}}{\alpha^{2}-\left(\Omega_{\mathrm{F}}-\omega\right)^{2} \varpi^{2}-\mathcal{M}^{2}}
\end{gathered}
$$

Algebraic Relations

$$
\begin{aligned}
\frac{I}{2 \pi} & =c \eta_{\mathrm{n}} \frac{L_{\mathrm{n}}-\Omega_{\mathrm{F}} \varpi^{2}}{1-\mathcal{M}^{2}} \\
v_{\varphi} & =\frac{1}{\varpi} \frac{\Omega_{\mathrm{F}} \varpi^{2}-L_{\mathrm{n}} \mathcal{M}^{2}}{1-\mathcal{M}^{2}}
\end{aligned}
$$

- Subsonic flow

$$
\mathrm{v}_{\varphi}=\Omega_{\mathrm{F}} r \sin \theta
$$

- Supersonic flow $\mathrm{v}_{\varphi}=L / r \sin \theta, \mathrm{v}_{\mathrm{p}} \sim \Omega_{\mathrm{F}} r_{\mathrm{F}}$

The origin of an acceleration is a centrifugal force

Inside the critical surfaces the magnetic field plays a role of a sling, $\Omega=\Omega_{\mathrm{F}}$, so that

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{p}}\left(r_{\mathrm{F}}\right)=\Omega_{\mathrm{F}} r_{\mathrm{F}} \sim\left(2 E_{\mathrm{n}}\right)^{1 / 2}=\mathrm{v}_{\mathrm{inf}} \\
& \mathrm{v}_{\mathrm{p}}\left(r_{\mathrm{F}}\right) \sim \mathrm{v}_{\mathrm{inf}}
\end{aligned}
$$

Simple asymptotic solutions

The role of the curvature

Grad-Shafranov equation is the force-balance one. For magnetically dominated case

$$
\rho_{\mathrm{e}} \boldsymbol{E}+\boldsymbol{j} \times \boldsymbol{B} / c \sim 0 .
$$

After some algebra

$$
\frac{S / c}{R_{c}}=\frac{1}{4 \pi} \nabla\left(B_{\varphi}^{2}-E^{2}\right)+\frac{1}{4 \pi} \nabla\left(B_{p}^{2}\right)
$$

If one can neglect the curvature $R_{\mathrm{c},}$, then $B^{2}-E^{2} \sim B^{2} / \gamma^{2}$ and $B^{2}{ }_{\varphi}=x^{2} B^{2}{ }_{\mathrm{p}}$, so we return to

$$
\gamma=x
$$

The role of the curvature

$$
\frac{S / c}{R_{\mathrm{c}}}=\frac{1}{4 \pi} \nabla\left(B_{\varphi}^{2}-E^{2}\right)+\frac{1}{4 \pi} \nabla\left(B_{\mathrm{p}}^{2}\right)
$$

If one cannot neglect the curvature R_{c}, then $S \sim(c / 4 \pi) B_{\varphi}{ }^{2}$, and one can neglect the last term (Beskin, Zakamska, Sol, MNRAS, 347, 587, 2004).

It gives

$$
\gamma=\left(R_{c} / \varpi\right)^{1 / 2}
$$

Magnetized Wind

$$
\left(\sigma / \gamma_{\mathrm{in}}\right)^{1 / 2}
$$

- Magnetization parameter

$$
\sigma=e \Omega \Psi_{\text {tot }} / \lambda m c^{3} \gg 1
$$

($\gamma=\sigma$ corresponds to full conversion)

- Position of the fast magnetosonic surface

$$
r_{\mathrm{F}}=R_{\mathrm{L}} \sigma^{1 / 3} \sin ^{-1 / 3} \theta
$$

- Disturbance of the poloidal magnetic field at $r=r_{\mathrm{F}}$

$$
\delta \Psi / \Psi=\sigma^{-2 / 3}
$$

Magnetized Wind (Acceleration)

For $r<r_{\mathrm{F}}$

$$
\gamma \sim x=\Omega r \sin \theta / c
$$

- Fast Magnetosonic Surface

$$
\gamma\left(r_{\mathrm{F}}\right)=\sigma^{1 / 3} \sin ^{2 / 3} \theta(\text { not } \sigma)
$$

- For $r \gg r_{\mathrm{F}}$

$$
\Psi / \Psi_{0}=1-\cos \theta+\sigma^{-2 / 3} \ln ^{1 / 3}\left(r / r_{\mathrm{F}}\right)
$$

$$
\gamma \sim \sigma^{1 / 3} \ln ^{1 / 3}\left(r / r_{\mathrm{F}}\right)
$$

No collimation, no particle acceleration outside r_{F}

Numerical calculations (S.V.Bogovalov, A\&A, 371, 1155, 2001)

S.Komissarov, MNRAS, 350, 1431 (2004)

Parabolic magnetic field

(V.S.Beskin \& E.E.Nokhrina, MNRAS. 367. 375. 2006)

- FMS position

$$
r_{\mathrm{F}}=R_{\mathrm{L}}(\sigma / \theta)^{1 / 2}
$$

- Lorentz-factor varies from $\gamma_{\mathrm{F}}=\gamma_{\mathrm{in}}$ at radial distance $x=\gamma_{\text {in }}$ to $\gamma_{\mathrm{F}}=\sigma^{1 / 3}$ at $x=\sigma^{1 / 3}$
- For $z>\sigma^{2 / 3} R_{\mathrm{L}}$ the flow becomes 1D (cylindrical)

J.McKinney, MNRAS, 368,1561 (2006)

$$
\gamma(z)=\left(z / R_{L}\right)^{1 / 2}, u_{\varphi}=1
$$

R. Narayan, J.McKinney, A.F.Farmer, MNRAS, 375, 548 (2006)

Self-similar solution $z \sim \omega^{\alpha}$
For $\alpha>2$

$$
\gamma=x
$$

For $\alpha<2$
$\gamma=\left(R_{c} / \varpi\right)^{1 / 2}$

Central core

Central core $r_{\text {core }}=\gamma_{\text {in }} R_{\mathrm{L}}$

$$
B_{\min }=B\left(R_{\mathrm{L}}\right) / \sigma \gamma_{\text {in }}, \Psi_{\text {core }}=\left(\gamma_{\mathrm{in}} / \sigma\right) \Psi_{0}
$$

Yu.Lyubarsky,
ApJ. 698, 1570, 2009

V.S.Beskin, E.E.Nokhrina, MNRAS, 397, 1486, 2009

Central core

S.Komissarov, M.Barkov,
N.Vlahakis, A.Königl,

MNRAS, 380, 51, 2007

O.Porth, Ch.Fendt, Z.Meliani,B.Vaidya. ApJ (in press) (2011)

Conclusion

- Effective ($\gamma=x$) acceleration takes place for strong collimation only (parabolic or stronger)
- Ineffective acceleration for weak collimation (parabolic or weaker)
- Effective particle acceleration takes place only if

$$
\varpi \sim \sigma R_{L}
$$

- Effective particle acceleration is possible only if the curvature plays no role
- External media is necessary

