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Examples of MHD turbulence

- Solar wind - Solar corona
- Solar tachocline - Interstellar medium
- Accretion disk - Solar convective zone



Examples of MHD turbulence
In various applied areas

- Noise decrease using plasma actuator for control of large
vortex structures in jets

- Possibility of boundary layer control and drag reduction
- Decrease of turbulent flow resistance in aerospace industry
- MHD flow in a channel for steel-casting process

- In pipes for cooling of nuclear fusion reactors



Plan of presentation

LES for Perfect gas

LES for heat-conductive gas

LES application to space plasma turbulence
LES for forced MHD turbulence

Conclusions



MHD equations
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RANS, DNS & LES
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Filtering operation

Large-scale flow
/ g

Turbulent flow

~~ Small-scale flow
c ’

f=f+f

Filter functions:

f(x)= j f (X)G(X, X; A)dx’
°  Gaussian filter
 Top-hat filter
* Fourier cutoff filter

Filter function
(filter G satisfies normalization property)



Filtering operation

To simplify equations describing turbulent MHD flow with
variable density it is convenient to use Favre filtering (known as
mass-weighted filtering) so that to avoid the appearance of
extra SGS terms. Therefore, Favre filtering is used in this work.
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Filtered MHD equations

( 6p 9P,
ot OX ;
A, O.0 ~ B* S ot
< 6,0U| 1 0 (I(_)uiuj + E5ij _iaij n B - 12 BiBj) _ i
A 8Xj Re 2M, M, @Xj
B O ~5 &5~ 1 0°B Gr?i
o ox, (U;B =Bt = Re ox2  ox.  Dimensionless form of
k | ) J J the equations

On the right-hand sides of equations the terms designate influence of subgrid terms
on the filtered part. To determine these terms, special turbulent parametrizations
based on large-scale values describing turbulent MHD flow must be used.
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Smagorinsky model for MHD

Approximating the subgrid energy dissipation with the aid of
the local resolved dissipation rate, s~/2(28%:5%)*> and ™ ~72[j|> leads to
the classical Smagorinsky model and its straightforward MHD extension:
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Cross-helicity model

The cross helicity is H® = L (u-B)dv

With regard to the mixing length framework outlined above the functions ¢
and 7 are estimated as the product of subgrid dissipation and an associated
length scale. However, instead of the local resolved kinetic and magnetic

energy dissipation terms, the corresponding local cross-helicity dissipation
expressions
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the electric current density j=V Xb



Cross-helicity model

The cross-helicity is related to the transfer between kinetic and magnetic
energies caused by the Lorentz force. Therefore, the cross helicity allows one
to estimate the energy exchange between large and small scales in the LES
method:

—A2|oughb /2 : :
v, =C,pA |S,ij%'sij | - turbulent viscosity

i =2Y,pA*| f||S*| - isotropic term f | SuSP /2

n.=D,A’sgn( jw)| jo['* - turbulent magnetic diffusivity

Since the energetically most favorable configuration of the local velocity and magnetic field is
V||B, any decrease of alignment of these two vectors increases locally the magnetic energy.
The process works inversely when the local alignment increases whereby the direction of
change is given by the sign of the local cross-helicity dissipation. The justification is based on
the existence of the inverse magnetic helicity cascade.



Scale-similarity model for
MHD case

The scale-similarity model is not of the eddy-viscosity-type. It is based on
the assumption that the component of the SGS most active in the energy
transfer from large to small scales can be estimated with sufficient accuracy
from the smallest resolved scale, which can be obtained by filtering the
subgrid-scale quantities
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Mixed model for compressible
MHD turbulence

The mixed model is a combination of two subgrid-scale closures: the scale
similarity model and the Smagorinsky model fro MHD case.
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Dynamic procedure
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computed modeled in LES N Y
Germano assumed that there is an
Efk algebraic relation between the
- e - stresses at two different filter levels
r and the resolved stresses. In this
] o - model, the model parameter is
% ' - determined dynamically, and not an
ad hoc constant.
% | |
/ Applying a second filter to the
£~ filtered momentum equations a
% similar expression is achieved for
% the new subtest scale stress t
oz subtest scale stress tensor
= Tij.



CASE STUDIES

The left boundary for Re is chosen so as to provide a regime of developed turbulence, and the right boundary is the
compromise between obtaining adequate DNS results and the necessity of carrying out the comparative analysis with
subgrid-scale LES models. The value of the right boundary of the considered interval for magnetic Reynolds number
is defined so that we investigate decaying compressible MHD turbulence, and the probability of occurrence of
dynamo-processes in three-dimensional charged fluid flow increases with Re_m. The left boundary for Re_m is
determined to express the role of magnetic effects in MHD flow. Mach number is limited by one because in this work
approximation of polytropy gas is accepted .The flow with the value Mach number less than 0.2 is not interesting
from the point of view of studying compressible flow.

Case Re | Re Re. m |Ms Ma

50 390 10 0.6 0.6
2 25 100 10 0.6 0.6
3 100 1580 10 0.6 0.6
4 50 390 2 0.6 0.6
5 50 390 20 0.6 0.6
6 50 390 10 0.2 0.6
7 50 390 10 1 0.6




CASE#1-1
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CASE#1-5
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Kinetic energy

For Kinetic energy, larger divergence of LES results was observed with a
decrease in magnetic Reynolds number using various SGS closures. The scale-
similarity model shows the worst results, however, the other SGS closures
Increase calculation accuracy.

*The changing of Reynolds number produces qualitatively similar results, as
the initial conditions of velocity and magnetic fields are the same, and
therefore Taylor Reynolds number does not have a significant impact on the
choice of subgrid parameterizations in our computations.

*Mach number Ms exerts essential influence on results of modeling. The
divergence between DNS and LES results for kinetic energy increases with Ms.

*Generally, the Smagorinsky model and the cross-helicity model yield the best
accordance with DNS under various Mach number.
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Magnetic energy

*The differences between SGS models for magnetic energy are shown to
decrease with reducing magnetic Reynolds number and all models above
demonstrate good agreement with DNS results at small value of number Rem.

*The effect of subgrid-scale closures increases with magnetic Reynolds number
for modeling of compressible MHD turbulence, but the rate of dissipation of the
magnetic energy decreases with increasing Re_m.

*Generally, the best results are shown for the Smagorinsky, the Kolmogorov,
and the cross-helicity models for evolution of the magnetic energy.

*The deviations in results for magnetic energy decrease with increasing Ms. It is
necessary to notice, that magnetic energy reaches a stationary level more
rapidly with reducing Mach number.



Cross-helicity
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Cross-helicity

For the cross-helicity, the influence of subgrid-scale parametrizations
Increases with magnetic Reynolds number.

*The scale-similarity model demonstrates the worst results. In the presence
of adequate SGS parametrization improves calculation accuracy.

*The Smagorinsky model shows the best results for the cross-helicity both for
high and for low Mach numbers.



Skewness and flathess

The departure from Gaussianity for fluid turbulence in the laboratory or in
numerical simulations is measured in terms of the skewness and flatness factors.

The flatness factor (sometimes also called kurtosis) in turbulent flows is a measure of
intermittency. The flatness is an indication of the occurrence of fluctuations far from the
mean: it is an indicator of the relative frequency of rare events. Hence the flatness
increases with increasing sparseness of the fluctuations:

<Bf>

<u?>
Ku, =— Kb, =
bo(<u?>) ' (<Bf>)

The skewness is related to the asymmetry of the probability density function of the velocity
or magnetic filed fluctuations. It is a sensitive indicator of changes in the large scale
structure.
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outcome

= applicability of LES method for studying of non-Gaussian properties of
probability density function for turbulent compressible magnetic fluid flow

= potential feasibilities of various subgrid-scale parameterizations by means of
comparison with DNS results are explored

= efficiency is demonstrated by various subgrid-scale models depends on
similarity numbers of turbulent MHD flow. Lack of dissipation in LES model
without any SGS parametrization for kinetic and magnetic energies does not
have an effect on determination of the skewness and the flatness, the case
without any subgrid modeling sometimes lies even closer to the DNS results.
This indicates that the energy pile-up at the small scales, that is characteristic for
the case without any SGS closure, does not significantly influence determination
of PDF

= among the subgrid models, the best results for studying of the flathess and the
skewness of the velocity and the magnetic field components are demonstrated
by the Smagorinsky model for MHD turbulence and the model based on cross-
helicity for MHD case.



MHD EQUATIONS FOR HEAT
CONDUCTING FLUID

The governing system of compressible electrically conducting
fluid is written in the following form:
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MHD EQUATIONS FOR HEAT
CONDUCTING FLUID -2

The MHD approximation implies that the energy of the electric field is much less
than that of the magnetic field. In this case, the electric field is eliminated from the
governing system of equations, and flow characteristics are expressed in terms of
magnetic field. Using Maxwell equations for electrodynamic field, we transform
MHD equations and reduce to the following dimensionless form:
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Filtered MHD equations for
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Subgrid-scale terms of filtered
MHD equations for heat-
conducting plasma

11— _ _

W - SGS stresses

G L LD L Tor T - magnetic SGS stresses
Q=€ —241) - SGS heat flux
- D T ZD - SGS turbulent diffusion
V=381 —BR) - SGS magnetic energy flux
G=B By B - SGS energy of the

Interaction between the
magnetic tension and the
velocity



Models for SGS terms

For SGS stresses we use the Smagorinsky model for the MHD case:
.~ ~ ~ 7 o~
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The eddy diffusivity model is used for the closure of the subgrid-scale heat flux. This eddy
diffusivity model is similar to the molecular heat flux term, but the molecular viscosity
and Prandtl number have been replaced by the dynamic eddy viscosity and the turbulent

Prandtl number: ~ _
Np|S"|eT
Pr.  0X,

The model for Jj is based on an analogy to Reynolds-averaged Navier-Stokes equations
and on the assumption that U, = u;
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CASE STUDIES

Since compressibility effects and temporal dynamics of temperature defined from the
total energy equation depend nontrivially on the Mach number, in this work we consider
three cases:

the Mach number Ms = 0.38, that is, the flow is moderately compressible;

the Mach number Ms = 0.70 , when compressibility plays an important role in turbulent
fluid flow:;

the Mach number Ms = 1.11 corresponding to appearance of strong discontinuity in
essentially compressible flow.

In all three numerical experiments, the following dimensionless parameters for
computations are used: the hydrodynamic Reynolds number Re = 281, the microscale
(Taylor) Reynolds number Re_| = 43, the magnetic Reynolds number Re_m = 10, the
magnetic Mach number Ma = 1.2, the Prandtl number Pr = 1.0 and the ratio of the
specific heats 1.5.
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Cross-helicity
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Kinetic energy spectrum

Magnetic energy spectrum
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Kinetic and magnetic energy spectra.
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Kinetic energy spectrum

Magnetic energy spectrum

Kinetic and magnetic energy spectra.




outcome

* The system of the filtered MHD equations with the total energy equation using the
mass-weighted filtering procedure has been obtained. Novel subgrid-scale terms arise in
total energy equation due to the presence of energy equation.

* New subgrid-scale models for the SGS terms, appearing after filtering procedure in the
total energy equation in the presence of magnetic field, are suggested.

« Consideration of the SGS terms in the energy equation scarcely affects the kinetic and
the magnetic energy even at high Mach numbers, while for the temperature (same as for
the internal energy) the presence of SGS models in the energy equation is an important
condition for improvement of calculation accuracy of thermodynamic quantities.

« Generally, LES method using explicit mass-weighted filtering demonstrates good results
for modeling of electrically and heat conducting fluid in MHD turbulence when the
medium is weakly or moderately compressible.
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There is growing interest in observations and
explanation of the spectrum of the density
fluctuations in the interstellar medium. These
fluctuations are responsible for radio wave
scattering in the interstellar medium and cause
interstellar scintillation fluctuations in the
amplitude and phase of radio waves. Kolmogorov-
like k™" spectrum of density fluctuations have
been observed in wide range of scales in the local
interstellar medium (from an outer scale of a few
parsecs to scales of about 200 km).



Parameters of numerical study
of local interstellar medium

For study of compressible MHD turbulence in interstellar, medium we use large eddy
simulation (LES) method. Smagorinsky model for compressible MHD case for subgrid-
scale parameterization is applied. The Smagorinsky model for compressible MHD
turbulence showed accurate results under various range of similarity numbers.

Initial parameters: Re ~ 2000 M,=M, =22
Re, =200 (ambipolar diffusion)

The initial isotropic turbulent spectrum was chosen for kinetic and magnetic energies in
Fourier space to be close to k> with random amplitudes and phases in all three
directions. The choice of such spectrum as initial conditions is due to velocity
perturbations with an initial power spectrum in Fourier space similar to that of developed
turbulence.

The simulation domain is a cube with dimensions of ;°



Compressibility properties
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Decay of turbulent small-scale Mach Time dynamics of the velocity
number with time. A transition from a divergence. The velocity divergence
supersonic to a subsonic regime can be describing medium compressibility
observed. attenuates and the flow becomes

weakly compressible with time.



Turbulent spectra in the local
Interstellar medium
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The kinetic ener%y spectrum (left). Normalized and smoothed spectrum of kinetic energy,
multiplied by k> (right). Notice that the spectrum is close to k= in a forward cascade
regime of decaying turbulence. However, there is well-defined inertial Kolmogorov-like
range of k'3



Turbulent spectra in the local
Interstellar medium
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Normalized density fluctuation spectrum
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The density spectrum is the solid line and the density fluctuations spectrum is the dot line (left).
Normalized and smoothed spectrum of density fluctuatlons multiplied by k>3 (right). Both
graphs (in the left figure) have spectral index close to k3 . Moreover, there is well-defined
inertial Kolmogorov-like range of |=5/3 that confirms observatlon data.



Anisotropic turbulence

Velocity spectra

Anisotropy and symmetry breakdown are caused first of all by
the magnetic field at low value of the plasma beta when the
role of the magnetic field is substantial. Anisotropic cascades
are observed to be due to propagating compressible acoustic
modes that hinder spectral transfer in the local Fourier space
at high value of plasma beta when the role of the magnetic
field is little. These modes in compressible MHD turbulence
could be excited either by a large-scale or ambient velocity
component of the background hydrodynamic turbulence.
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outcome

> It is shown that density fluctuations are a passive scalar in a velocity field in weakly
compressible magnetohydrodynamic turbulence and demonstrate Kolmogorov-like spectrum

» The decrease of energy-containing large eddies and inertial range with time, and the
increase of dissipative scale are also represented

> It is shown, that the turbulent sonic Mach number decreases significantly from a
supersonic turbulent regime, where the medium is strongly compressible, to a subsonic
value of Mach number describing weakly compressible flow

> In local interstellar medium, the transition of MHD turbulent flow from a strongly
compressible to a weakly compressible state not only transforms the characteristic
supersonic motion into subsonic motion, but also attenuates plasma magnetization, which is
shown in this work because plasma beta increases with time, thus, role of magnetic energy
decreases in comparison with plasma pressure.

» The anisotropy of turbulent flow is considered and it is demonstrated that large-scale flow
shows anisotropic properties while small-scale structures are isotropic.



Compressible MHD equations

The system of equations of compressible magnetohydrodynamic turbulence in the
presence of external force is written in the following form:
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Polytropic relation: P = fod



Turbulence
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Kolmogorov-Obukhov spectrum E(k) ~ k‘5/3

Iroshnikov-Kraichnan spectrum  E(K) ~ k32



Linear forcing

Idea essentially consists in adding a force proportional to the fluctuating velocity.
Linear forcing resembles a turbulence when forced with a mean velocity gradient, that
IS, a shear. This force appears as a term in the equation for fluctuating velocity that
corresponds to a production term in the equation of turbulent kinetic energy.

The equation for the fluctuating part of the velocity in a compressible MHD
turbulent flow are written as
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Here following decomposition referred to as the Reynolds decomposition is used:

w; = U; 4+ 1;, B; =6, + B;, Bi =8, + B;, p= P + p, Oij = 2ij + 05



Linear forcing

In symbolic terms, derivation of turbulent kinetic energy equation can be written
as (u-NSeq)—UNSeq) which yields:
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where 3, =

Bff.f _ f—f - turbulent magnetic tensor

production of turbulent energy per unit volume per unit time resulting
from the interaction between the Reynolds stress and the mean shear.



Linear forcing

F!" = Opu; - driving term proportional to the velocity

l

coefficient which is determined from a balance
of kinetic energy for a statistically stationary state:
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Polytropic plasma

Spectra of MHD turbulence



Polytropic plasma

0,043

URMS

0,04151-
7 0.1r B
a
1 |
| il 0.05- B
0.61 b

Brms

0,04

0.2O

0,03851
f0 2 % t io 50 60 7 % 10 20 30 . 10 50 60 70 o 10 2 20 ¢ 40 50 &
Time dynamics of rms velocity, rms magnetic field and mean density.
10°F
Spectrum of total energy




outcome

The theory of linear forcing is developed for study of compressible MHD
turbulence in coordinate space. The expressions of external force which
provide obtaining a statistically stationary regime of turbulence are derived.
The formulae used for the formulation of large eddy simulation approach are
obtained. The potential possibilities of LES method to reproduce physics of
flow under investigation in a stationary regime both for polytropyc and for
heat-conducting plasmas are studied.

Spectra of MHD turbulence is obtained and studied. Type of obtained
spectra is determined. Kolmogorov and Iroshnikov-Kraichnan spectra of total
energy are obtained and conditions of their occurrence are showed.

Efficiency of LES method for studying of scale-invariant properties of
compressible MHD turbulence is demonstrated.



