
Developments in Large eddy 

Simulations of compressible 

magnetohydrodynamic turbulence

Arakel Petrosyan
Theoretical section,

Space Research Institute of the Russian Academy of Science,

Moscow, Russia

MOSCOW, 20 June , 2011



Examples of MHD turbulence

- Solar wind

- Solar tachocline

- Accretion disk

- Solar corona

- Interstellar medium

- Solar convective zone



Examples of MHD turbulence 

in various applied areas

- Noise decrease using plasma actuator for control of large

vortex structures in jets

- Possibility of boundary layer control and drag reduction

- Decrease of turbulent flow resistance in aerospace industry

- MHD flow in a channel for steel-casting process 

- In pipes for cooling of nuclear fusion reactors



Plan of presentation

• LES for Perfect gas

• LES for heat-conductive gas

• LES application to space plasma turbulence

• LES for forced MHD turbulence

• Conclusions



MHD equations
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RANS, DNS & LES



Filtering operation

Turbulent flow

Large-scale flow

Small-scale flow

Filter function

(filter G satisfies normalization property)
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Filter functions:

• Gaussian filter

• Top-hat filter

• Fourier cutoff filter
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Filtering operation 
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To simplify equations describing turbulent MHD flow with

variable density it is convenient to use Favre filtering (known as 

mass-weighted filtering) so that to avoid the appearance of 

extra SGS terms. Therefore, Favre filtering is used in this work.

The Favre filtered velocity:

: 

Properties:
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Filtered MHD equations

On the right-hand sides of equations the terms designate influence of subgrid terms 

on the filtered part. To determine these terms, special turbulent parametrizations 

based on large-scale values describing turbulent MHD flow must be used.

Dimensionless form of 

the equations
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Subgrid scale (SGS) or 

Subfilter-scale (SFS) terms



Smagorinsky model for MHD

Turbulent viscosity:

- large-scale strain rate tensor

Turbulent diffusivity:

- large-scale magnetic rotation tensor

)
~

3

1~
(2

3

1
ijkkijtij

u

kk

u

ij SS   22

1 |
~

|2 uu

kk SY   2/1)2(|
~

| ijij

u SSS 

|
~

|2

1

u

t SC  

ijtij

b

kk

b

ij J 2
3

1


||2

1 jDt 

)

~~
(

2

1~

i

j

j

i
ij

x

u

x

u
S











)(
2

1

i

j

j

i
ij

x

B

x

B
J











Approximating the subgrid energy dissipation with the aid of

the local resolved dissipation rate,                          and                    leads to 

the classical Smagorinsky model and its straightforward MHD extension:



Cross-helicity model 

With regard to the mixing length framework outlined above the functions      

and     are estimated as the product of subgrid dissipation and an associated 

length scale. However, instead of the local resolved kinetic and magnetic 

energy dissipation terms, the corresponding local cross-helicity dissipation 

expressions



The cross helicity is  
V

c dVBuH )(

the resolved vorticity

the electric current density



Cross-helicity model 
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The cross-helicity is related to the transfer between kinetic and magnetic

energies caused by the Lorentz force. Therefore, the cross helicity allows one 

to estimate the energy exchange between large and small scales in the LES 

method:
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- turbulent viscosity

- isotropic term

- turbulent magnetic diffusivity
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Since the energetically most favorable configuration of the local velocity and magnetic field is 

V||B, any decrease of alignment of these two vectors increases locally the magnetic energy. 

The process works inversely when the local alignment increases whereby the direction of 

change is given by the sign of the local cross-helicity dissipation. The justification is based on 

the existence of the inverse magnetic helicity cascade.



Scale-similarity model for 

MHD case
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The scale-similarity model is not of the eddy-viscosity-type. It is based on 

the assumption that the component of the SGS most active in the energy

transfer from large to small scales can be estimated with sufficient accuracy 

from the smallest resolved scale, which can be obtained by filtering the 

subgrid-scale quantities



Mixed model for compressible 

MHD turbulence

The mixed model is a combination of two subgrid-scale closures: the scale 

similarity model and the Smagorinsky model fro MHD case.
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Dynamic procedure

computed modeled in LES

Germano assumed that there is an 

algebraic relation between the

stresses at two different filter levels 

and the resolved stresses. In this

model, the model parameter is

determined dynamically, and not an 

ad hoc constant.

Applying a second filter to the 

filtered momentum equations a 

similar expression is achieved for 

the new subtest scale stress tensor

Tij.



CASE STUDIES

Case Re_l Re Re_m Ms Ma

1 50 390 10 0.6 0.6

2 25 100 10 0.6 0.6

3 100 1580 10 0.6 0.6

4 50 390 2 0.6 0.6

5 50 390 20 0.6 0.6

6 50 390 10 0.2 0.6

7 50 390 10 1 0.6

The left boundary for Re is chosen so as to provide a regime of developed turbulence, and the right boundary is the 

compromise between obtaining adequate DNS results and the necessity of carrying out the comparative analysis with 

subgrid-scale LES models. The value of the right boundary of the considered interval for magnetic Reynolds number 

is defined so that we investigate decaying compressible MHD turbulence, and the probability of occurrence of 

dynamo-processes in three-dimensional charged fluid flow increases with Re_m. The left boundary for Re_m is 

determined to express the role of magnetic effects in MHD flow. Mach number is limited by one because in this work 

approximation of polytropy gas is accepted .The flow with the value Mach number less than 0.2 is not interesting 

from the point of view of studying compressible flow.



CASE #1 - 1



CASE #1 - 2
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kinetic energy subgrid-

scale dissipation
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dissipation
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scale dissipation



CASE #1 - 3
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Fluctuating parts:



CASE #1 - 4

Kurtosis (or flatness) of 

a velocity component:

Kurtosis (or flatness) of 

a magnetic field:



CASE #1 - 5

Skewness of a 

velocity component:

Skewness of a 

magnetic field:



Kinetic energy

Ms=1 Ms=0.2

Re_m=2 Re_m=20



Kinetic energy 

•For kinetic energy, larger divergence of LES results was observed with a 

decrease in magnetic Reynolds number using various SGS closures. The scale-

similarity model shows the worst results, however, the other SGS closures 

increase calculation accuracy.

•The changing of Reynolds number produces qualitatively similar results, as 

the initial conditions of velocity and magnetic fields are the same, and  

therefore Taylor Reynolds number does not have a significant  impact on the 

choice of subgrid parameterizations in our computations.

•Mach number Ms exerts essential influence on results of modeling. The

divergence between DNS and LES results for kinetic energy increases with Ms. 

•Generally, the Smagorinsky model and the cross-helicity model yield the best 

accordance with DNS under various Mach number.



Magnetic energy 

Ms=1 Ms=0.2

Re_m=2 Re_m=20



Magnetic energy 

•The differences between SGS models for magnetic energy are shown to

decrease with reducing magnetic Reynolds number and all models above

demonstrate good agreement with DNS results at small value of number Rem. 

•The effect of subgrid-scale closures increases with magnetic Reynolds number 

for modeling of compressible MHD turbulence, but the rate of dissipation of the 

magnetic energy decreases with increasing Re_m. 

•Generally, the best results are shown for the Smagorinsky, the Kolmogorov, 

and the cross-helicity models for evolution of the magnetic energy.

•The deviations in results for magnetic energy decrease with increasing Ms. It is 

necessary to notice, that magnetic energy reaches a stationary level more 

rapidly with reducing Mach number.



Cross-helicity 

Ms=1 Ms=0.2

Re_m=2 Re_m=20



Cross-helicity 

•For the cross-helicity, the influence of subgrid-scale parametrizations 

increases with magnetic Reynolds number.

•The scale-similarity model demonstrates the worst results. In the presence 

of adequate SGS parametrization improves calculation accuracy.

•The Smagorinsky model shows the best results for the cross-helicity both for 

high and for low Mach numbers. 
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The departure from Gaussianity for fluid turbulence in the laboratory or in 

numerical simulations is measured in terms of the skewness and flatness factors.

The flatness factor (sometimes also called kurtosis) in turbulent flows is a measure of 

intermittency. The flatness is an indication of the occurrence of fluctuations far from the 

mean: it is an indicator of the relative frequency of rare events. Hence the flatness 

increases with increasing sparseness of the fluctuations:

The skewness is  related to the asymmetry of the probability density function of the velocity 

or magnetic filed fluctuations. It is a sensitive indicator of changes in the large scale 

structure.

Skewness and flatness



Time evolution of skewness and 

flatness of velocity and magnetic 

field components for the case 

Re = 100, Re_l = 25,

Re_m = 10.0, M_s = 0.6. 



Time dynamics of skewness and 

flatness  of velocity and magnetic 

field components for the case

Re = 100, Re_l = 25,

Re_m = 10.0, M_s = 0.6. 



outcome
 applicability of LES method for studying of non-Gaussian properties of 

probability density function for turbulent compressible magnetic fluid flow

 potential feasibilities of various subgrid-scale parameterizations by means of 

comparison with DNS results are explored

 efficiency is demonstrated by various subgrid-scale models depends on 

similarity numbers of turbulent MHD flow. Lack of dissipation in LES model 

without any SGS parametrization for kinetic and magnetic energies does not 

have an effect on determination of the skewness and the flatness, the case 

without any subgrid modeling sometimes lies even closer to the DNS results. 

This indicates that the energy pile-up at the small scales, that is characteristic for 

the case without any SGS closure, does not significantly influence determination 

of PDF

 among the subgrid models, the best results for studying of the flatness and the 

skewness of the velocity and the magnetic field components are demonstrated 

by the Smagorinsky model for MHD turbulence and the model based on cross-

helicity for MHD case.
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MHD EQUATIONS FOR HEAT 

CONDUCTING FLUID
The governing system of compressible electrically conducting 

fluid is written in the following form:



MHD EQUATIONS FOR HEAT 

CONDUCTING FLUID -2
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The MHD approximation implies that the energy of the electric field is much less 

than that of the magnetic field. In this case, the electric field is eliminated from the 

governing system of equations, and flow characteristics are expressed in terms of 

magnetic field. Using Maxwell equations for electrodynamic field, we transform 

MHD equations and reduce to the following dimensionless form:



Filtered MHD equations for 

heat-conducting plasma
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Subgrid-scale terms of filtered 

MHD equations for heat-

conducting plasma 
- SGS stresses

- magnetic SGS stresses

- SGS heat flux

- SGS turbulent diffusion

- SGS magnetic energy flux

- SGS energy of the

interaction between the 

magnetic tension and the  

velocity



Models for SGS terms
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For SGS stresses we use the Smagorinsky model for the MHD case:

The eddy diffusivity model is used for the closure of the subgrid-scale heat flux. This eddy 

diffusivity model is similar to the molecular heat flux term, but the molecular viscosity 

and Prandtl number have been replaced by the dynamic eddy viscosity and the turbulent 

Prandtl number:
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Since compressibility effects and temporal dynamics of temperature defined from the 

total energy equation depend nontrivially on the Mach number, in this work we consider 

three cases: 

the Mach number Ms = 0.38, that is, the flow is moderately compressible; 

the Mach number Ms = 0.70 , when compressibility plays an important role in turbulent 

fluid flow; 

the Mach number Ms = 1.11 corresponding to appearance of strong discontinuity in

essentially compressible flow. 

In all three numerical experiments, the following dimensionless parameters for 

computations are used: the hydrodynamic Reynolds number Re = 281, the microscale 

(Taylor) Reynolds number Re_l = 43,  the magnetic Reynolds number Re_m = 10, the 

magnetic Mach number Ma = 1.2, the Prandtl number Pr = 1.0 and the ratio of the 

specific heats 1.5.

CASE STUDIES



M=0.38

Time dynamics of kinetic and 

magnetic energy



M=0.38

Time evolution of cross-helicity and temperature



M=0.38

Time dynamics the skewness of the temperature and the parameter Ft

- skewness of the 

temperature

- parameter, describing 

temperature fluctuations



M=0.38

Kinetic and magnetic energy spectra.



M=0.70

Time dynamics of kinetic and magnetic energy



M=0.70

Kinetic and magnetic energy spectra.



outcome

• The system of the filtered MHD equations with the total energy equation using the

mass-weighted filtering procedure has been obtained. Novel subgrid-scale terms arise in

total energy equation due to the presence of energy equation. 

• New subgrid-scale models for the SGS terms, appearing after filtering procedure in the 

total energy equation in the presence of magnetic field, are suggested. 

• Consideration of the SGS terms in the energy equation scarcely affects the kinetic and 

the magnetic energy even at high Mach numbers, while for the temperature (same as for 

the internal energy) the presence of SGS models in the energy equation is an important 

condition for improvement of calculation accuracy of thermodynamic quantities. 

• Generally, LES method using explicit mass-weighted filtering demonstrates good results 

for modeling of electrically and heat conducting fluid in MHD turbulence when the 

medium is weakly or moderately compressible. 



Local Interstellar Medium

Armstrong et al., ApJ (1995), 443:209-221

3/5k

There is growing interest in observations and 

explanation of the spectrum of the density 

fluctuations in the interstellar medium. These 

fluctuations are responsible for radio wave 

scattering in the interstellar medium and cause 

interstellar scintillation fluctuations in the 

amplitude and phase of radio waves. Kolmogorov-

like            spectrum of density fluctuations have 

been observed in wide range of scales in the local 

interstellar medium (from an outer scale of a few 

parsecs to scales of about 200 km).



Parameters of numerical study 

of local interstellar medium

3

For study of compressible MHD turbulence in interstellar, medium we use large eddy 

simulation (LES) method. Smagorinsky model for compressible MHD case for subgrid-

scale parameterization is applied. The Smagorinsky model for compressible MHD 

turbulence showed accurate results under various range of similarity numbers.

2000Re 

200Re m

2.2 As MM

The simulation domain is a cube with  dimensions of

Initial parameters:

(ambipolar diffusion)

The initial isotropic turbulent spectrum was chosen for kinetic and magnetic energies in 

Fourier space to be close to            with random amplitudes and phases in all three 

directions. The choice of such spectrum as initial conditions is due to velocity 

perturbations with an initial power spectrum in Fourier space similar to that of developed 

turbulence.

2k



Compressibility properties

Decay of turbulent small-scale Mach 

number with time. A transition from a 

supersonic  to a subsonic regime can be 

observed. 

Time dynamics of the velocity 

divergence. The velocity divergence 

describing medium compressibility 

attenuates and the flow becomes 

weakly compressible with time.



Turbulent spectra in the local 

interstellar medium

The kinetic energy spectrum (left). Normalized and smoothed spectrum of kinetic energy,

multiplied by (right). Notice that the spectrum is close to in a forward cascade

regime of decaying turbulence. However, there is well-defined inertial Kolmogorov-like

range of

3/5k 3k
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Turbulent spectra in the local 

interstellar medium

3/5k 3/5k

3/5k
The density spectrum is the solid line and the density fluctuations spectrum is the dot line (left).

Normalized and smoothed spectrum of density fluctuations, multiplied by (right). Both

graphs (in the left figure) have spectral index close to . Moreover, there is well-defined

inertial Kolmogorov-like range of that confirms observation data.
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Anisotropic turbulence

- the Shebalin 

angles (or 

anisotropy angles)

Anisotropy and symmetry breakdown are caused first of all by 

the magnetic field at low value of the plasma beta when the 

role of the magnetic field is substantial. Anisotropic cascades 

are observed to be due to propagating compressible acoustic 

modes that hinder spectral transfer in the local Fourier space 

at high value of plasma beta when the role of the magnetic 

field is little. These modes in compressible MHD turbulence 

could be excited either by a large-scale or ambient velocity 

component of the background hydrodynamic turbulence.



outcome
It is shown that density fluctuations are a passive scalar in a velocity field in weakly 

compressible magnetohydrodynamic turbulence and demonstrate Kolmogorov-like spectrum

The decrease of energy-containing large eddies and inertial range with time, and the 

increase of dissipative scale are also represented

It is shown, that the turbulent sonic Mach number decreases significantly from a 

supersonic turbulent regime, where the medium is strongly compressible, to a subsonic 

value of Mach number describing weakly compressible flow

In local interstellar medium, the transition of MHD turbulent flow from a strongly 

compressible to a weakly compressible state not only transforms the characteristic 

supersonic motion into subsonic motion, but also attenuates plasma magnetization, which is 

shown in this work because plasma beta increases with time, thus, role of magnetic energy 

decreases in comparison with plasma pressure.

The anisotropy of turbulent flow is considered and it is demonstrated that large-scale flow 

shows anisotropic properties while small-scale structures are isotropic.



Compressible MHD equations

j

j

x

u

t 






 

21 1
( )

4 8

ui
i j ij ij j i i

j

u
u u p B B B F

t x


  

 

 
      

 

2( ) bi
i j j i i i

j

B
B u B u B F

t x


 
     

 

0




j

j

x

B

The system of equations of compressible magnetohydrodynamic turbulence in the 

presence of external force is written in the following form:

Driving forces

Polytropic relation:
p



Turbulence
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Kolmogorov-Obukhov spectrum

Iroshnikov-Kraichnan spectrum
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I. Integral Scale

II. Inertial Subrange

III. Viscous Subrange



Linear forcing

Here following decomposition referred to as the Reynolds decomposition is used:

The equation for the fluctuating part of the velocity in a compressible MHD 

turbulent flow are written as

Idea essentially consists in adding a force proportional to the fluctuating velocity. 

Linear forcing resembles a turbulence when forced with a mean velocity gradient, that 

is, a shear. This force appears as a term in the equation for fluctuating velocity that 

corresponds to a production term in the equation of turbulent kinetic energy.



Linear forcing

In symbolic terms, derivation of turbulent kinetic energy equation can be written 

as                                            which   yields:

where - turbulent magnetic tensor

production of turbulent energy per unit volume per unit time resulting 

from the interaction between the Reynolds stress and the mean shear. 



Linear forcing

coefficient which is determined from a balance

of kinetic energy for a statistically stationary state:

- driving term proportional to the velocity

- mean dissipation rate of turbulent energy into heat



Polytropic plasma -1

Time evolution of U_rms and B_rms



Polytropic plasma 

Spectra of MHD turbulence



Polytropic plasma 

Time dynamics of rms velocity, rms magnetic field and mean density.

Spectrum of total energy



outcome

The theory of linear forcing is developed for study of compressible MHD 

turbulence  in coordinate space. The expressions of external force which 

provide obtaining a statistically stationary regime of turbulence are derived. 

The formulae used for the formulation of large eddy simulation approach are 

obtained. The potential possibilities of LES method to reproduce physics of 

flow under investigation in a stationary regime both for polytropyc and for 

heat-conducting plasmas are studied.

Spectra of MHD turbulence is obtained and studied. Type of obtained 

spectra is determined. Kolmogorov and Iroshnikov-Kraichnan spectra of total 

energy are obtained and conditions of their occurrence are showed. 

Efficiency of LES method for studying of scale-invariant properties of 

compressible MHD turbulence is demonstrated. 


