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Why pursue research on nuclear fusion
• scientific curiosity: to see how a “lit” fusion reactor would look like and

behave

• discovering basic physical processes of high energy plasmas

• generating an important connection among laboratory tested physics,
observations in high energy astrophysics and space physics experiments

• developing attractive neutron sources for a variety of applications

• pioneering new advanced technologies such as very high field magnets,
novel high temperature superconductors, innovative laser applications,
structural materials etc.

• accessing a new source of useful energy (a DT reactor has to be close to
ignition conditions in order to be capable of producing net energy)



Examples of Discoveries by Nuclear Fusion Research
Relevant to Astrophysics and Space Physics

• Particle and Angular Momentum Transport due to Collective Modes (not
represented by diffusion equations but by composite equations involving for
instance a diffusion and an opposite “inflow” process)

• Global Self-Organization Processes determining for instance temperature and
velocity profiles (e.g. considering only local effects of collective modes is not
sufficient to interpret the experiments). In fact, the “Principle of Profile
Consistency” (title of the original paper) should be applied to accretion structures
around compact objects

• The Spontaneous Rotation Phenomenon (axisymmetric plasmas are observed to
rotate spontaneously without an active injection of angular momentum)

• In depth (although not complete yet) understanding of Magnetic Reconnection
processes in plasmas with non-vanishing magnetic fields and various degrees of
collisionalities

• Two and Tri-dimensional Plasma and Field Configurations under nearly stationary
conditions (e.g. applicable to shining black holes)
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Plasma and Field Configurations

Conventional currentless disks can evolve into current carrying structures that can be
axisymmetric or tridimensional

• Non-linear Axisymmetric (stationary) Structures found theoretically consist of
- Periodic Sequences of (plasma) Rings
- Solitary Ring Pairs

• Tridimensional Structures found in the linearized approximation consist of
- Localized Trailing Spirals

Note

• Two of the observed plasma “states” around black holes (“Thermal” and “Jet” state)
can be associated with axisymmetric configurations

• One (“Extreme” state, exhibiting High-Frequency-Quasi-Periodic-Oscillations”) has
to be associated with non-axisymmetric configurations
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In dealing with axisymmetric pulsar magnetospheres we have to take
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Brief Comment on Pulsar Models

as poloidal currents producing slowing down                         have to be present.

That is,  I  is not a function of       only and is an odd function of  z.  The relevant 

magnetic configuration equation was derived originally in 1971 (published 

in Ap. J., 1973).

!0 =!0 t( )"# $%
!



1 5

Two-dimensional Plasma and
Field Configurations Around Black Holes

General Relativity corrections are neglected at first.  The plasma is rotating 

around a central object with a velocity 

V! = R" R,  z( )  
where  

 " R,  z( ) ! "k R( ) +#" R,  z( )  , 

"k $ GM% R3( )1
2  is the Keplerian frequency for the central object of mass M%  

and whose gravity is prevalent (that is, the plasma self gravity can be neglected) 

and  #" "k <1.  We assume, for simplicity that I = I &( ) .  Then 
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as in cases considered earlier of magnetically confined plasmas.
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Closed and open magnetic surfaces in the core of a composite disk structure.  
Here R! = R " R0( ) #R .  
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Ring Pair Solution (    -soliton, centered on           )

R! " R # R0( ) $R  and z " z $ z
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Possible driving factors for the relevant current patterns have to be envisioned.
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Ring Pairs (soliton solution)  
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In the case that we consider, the total momentum conservation equation, that 

includes both the toroidal rotation velocity and the effect of the gravitational field of 

the a central object, is 

!" #2ReR +$%G( ) = !$p + 1
c
J &B      ( I )  

where 
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and we call it the “Master Equation”.  
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We note that the vertical momentum conservation equation is, considering the 

expression for FMz  given earlier, 
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Clearly, we have two equations, (*) and (**), which give & R,  z( )  and p R,  z( )  
for reasonable choices of the density # R,  z( ), the poloidal current function I &( ) , 
and /$ & 1( ) . 

Is it possible to find profiles that are consistent with known thermal energy 

balance equations? 



1 17

This is where a self organization
process has to come in, as the
experimental evidence for the
existence of a radial “profile
consistency” (B.C., 1980) of the
electron temperature suggests.
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In order to proceed further we consider a radial interval R ! R0 < R0  around a  

given radius R0 .  Then  
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2  is considered to be the “driving factor” for the 

onset of the magnetic configurations that are analyzed and $ 1 B0R
2
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1 19

On the other hand, for the configurations we shall consider 
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that is independent of the toroidal field component. 

In this connection we note that the derivation of t he Master Equation is 

compatible with a pressure tensor of the form  

P = pth I + p
Fe.e.  
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P lasma Regime s And Regions 

  Now,  taking into account the characteristics of the observed radiation emission from black hole candidates, we 

may envision a sequence of three plasma regions developing in the vicinity of a rotating and “active” black hole.  These 

regions differ by the kinds of plasma and magnetic field geometry that are present in them.  In particular, we consider 

i)  a “Buffer Region” 

ii) a  “Three-regime Region” 

iii)  a “Structured Low Temperature Region” 

The Buffer Region is assumed to be bounded by the Ergosphere and to extend to a d istance close to the radius of 

the marginally stable (e.g.  RMS ! 9RG ) retrograde orbit.  This region is assumed to be strongly turbulent.  Thus coherent 

structures originating from external regions should remain excluded from it.  The source of energy for this region is 

considered to be the rotational energy of the black hole. 

In the region surrounding to the Buffer Region three plasma regimes can emerge (see following figure).  Each 

regime is characterized both by different particle distributions in v elocity space a nd by different coherent plasma 

structures.  In particular, we may identify 
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Sketch in the equatorial plane of the plasma regions surrounding a rotating black hole.  Here RMS = 9RG  and RL  is the 
distance at which the maximum amplitude of the spiral modes is localized. 
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a)  an “Extreme” (highly non thermal) Regime in which spiral structures are excited. 

b)  an “Intermediate Non-thermal” Regime in which plasma ring structures are    

present and rings are ejected vertically at the inner edge of the region. 

c)  a “Dissipative Thermal” regime where the ring structure is gradually dissipated  

within the Region before reaching the Buffer Region. 

In fact, it is well established experimentally, on the basis of the characteristics of the 

radiation emitted from Binary Black Holes, that these can be attributed to 3 states: 

i) a “Steep Power Law” (SPL) State,   

ii) a “Hard” State,  

 iii) a Thermal State.   

Transitions between states have been observed for the same object. 
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Referring to the “Extreme Regime” the assumption made in the derivation of the 

Master Equation that the electron distribution is represented by a scalar pressure pe  can 

no longer be made.  In particular, if the pressure tensor has an anisotropy of the type the 

Master Equation is no longer valid and we may argue that a two dimensional 

configuration of a disk structure may not be established.  Then dual spiral structures with 

the same basic characteristics as those described in A&A 504 (2009) are envisioned to 

become dominant.  These consist of two spiral channels, one with a relatively high 

plasma density and one with a low density.  The existence of the low density region 

characterized by relatively low runaway critical fields is consistent with the onset of 

spiral structures represented by the following density profiles 
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Tri-dimensional Structures
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Here RL  is the radial distance around which the mode is localized, !R  and !0
L  are the  

radial and vertical localization distances, respectively, " RL( )  is the frequency of the 

plasma rotation around the black hole, and m# RL  and kR  are the toroidal and radial 

mode numbers, respectively.  Moreover, sgn kRm# d" dR( ) < 0  corresponding to trailing 

spirals. 

   We note that the expressions for kR , !R ,  and !L
0  found from the linearized theory 

are  kR ! k0 = "D vA ,  vA
2 = B0

2 4$%0( ),  where B0  is the vertical “seed” magnetic field 

from which the considered perturbation can emerge, %0  is the plasma density on the 

equatorial plane,  !L
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! 0  is the linear growth rate of the unstable mode,  ! 0 <" , H0 # cs "k RL( ) and 

cs  is the local velocity of sound. We observe that accretion should be allowed to 

proceed at relatively fast rates along the considered spiral structures. 

Then we may estimate the spiral co-rotational radius to be at the distance 

 RL ! $MSRMS + %0
R  where  RMS ! 9RG , and $MS  is an appropriate uncertainty 

parameter.  In addition, we may estimate %0
R  as  %

0
R ! &R RLH0( )12   where &R <1 is 

a second uncertainty parameter.   
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When the particle distributions in momentum space have a non-thermal component 

such as that represented by which allows the formation of a composite axisymmetric 

disk structure in the Three-regime Region, the excitation of spiral modes can be 

prevented.  Then the associated HFQPOs disappear.  In addition we may argue that 

as a res ult of the interaction between the composite disk structure and the strong 

turbulence at the edge of the Buffer Region the last couple of plasma rings, carrying 

oppositely directed toroidal plasma currents that repel each other, could be ejected 

vertically.  Following the arguments given earlier the plasma rings can be expected 

to “arrive” intermittently with a period related to the onset of the modes that transfer 

particles from one separatrix to the next.  In particular, we may envision that jets 

results from the ejection of toroids (“smoke-rings”) carrying currents in the same 

(toroidal) directions launched in opposite vertical directions. We also note that 

experimental observations indicate that jets emerge from evolving disk structures.   



1 28

Ring ejection scenario. 
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In this connection we point out that a recent paper suggests that the power 

associated with jets is independent of the estimated angular momentum of the black 

holes with which they are connected. On the other hand it is reasonable to assume 

that the properties of the Buffer Region and of the plasmas contained in it depend on 

the black hole rotation.  We point out also that the formation and ejection of jets 

with a purely toroidal magnetic field was proposed and analyzed earlier. 

c) In the Dissipative Thermal regime the plasma can reach a relatively high 

temperature and maintain a thermal distribution as the coherent ring structure is 

dissipated before reaching the Buffer Region. 

Finally, in the outermost region the plasma is considered to be relatively cold 

and in a well thermalized state.  In this region a composite disk structure such as that 

described earlier is assumed to be well established allowing the (accreting) plasma 

to flow along successive magnetic separatrices as suggested in the following figure.    
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Low mass X-ray Binaries

Artist impression



X-ray Observations:
Active Spectral States

(Remillard&Mc Clintock 2006)

•Thermal state (High/Soft)
   high thermal disc fraction
•Hard state (Low/Hard)
   power law (non-thermal
emission) - Sometimes jets -
•Steep power law (Very High)
  highly non-thermal.
Sometimes HFQPOs
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High Frequency Quasi Periodic
Oscillations (HFQPOs)

• Highly Coherent Peaks
      in the X-ray power spectra
• 0.1-1200 Hz
      HF-> few hundred Hz
• Show up alone OR in pairs OR more
• In Black Holes:
     stable 3:2
• HFQPOs show up in the
      highly non-thermal (steep power

law) state
• jets and HFQPOs exclude each

other    
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•High frequency  QPOs lie in the range of ORBITAL
FREQUENCIES of free particle orbits just few
Schwarzschild radii outside the central source

•The frequencies scale with 1/M
    (e.g, Mc Clintock&Remillard 2004 )

Important Features
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Normal Modes in Plasma
Accretion Structures (Coppi 2008)

Tridimensional tightly wound spirals excited from a disc
embedded in a “seed” vertical magnetic field.

Excitation mechanism: differential rotation and
vertical gradients of plasma density and temperature.

They corotate at R0



1 36

3D plasma spirals (trailing)

ΔR  and Δz are the radial and vertical localizations

Δz
2



Where are they localized?
(B.Coppi, P.Rebusco and M.Bursa 2011,

in preparation)

= αMSRG

 

RG = GM*

c 2

We make 2 Assumptions



Hence…
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3:2?

              Ωlower =2 ΩK  and Ωupper =3 ΩK Right Ratio!

Higher toroidal number mφ modes decay into mφ =2
and mφ =3  modes, consistently with the observed

twin peak QPOs spectra with the 3:2 ratio.
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Ray-tracing (courtesy of Michal Bursa)

m=2

m=3



•We propose that the excitation of tri-dimensional spiral
modes be considered as the explanation for the emergence of
QPO’s

•The frequencies of the modes are tied to those of the local
rotation frequencies of plasmas around black holes

•A specific physical process for the excitation of the relevant
plasma collective modes is given, factor not covered by other
proposed theories.

• It is essential to advance the presented theory by dealing,
with non-thermal  particle distributions in phase space.

Remarks:
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GENERAL RELATIVITY CORRECTIONS 
The phenomena we consider to guide the presented theory, such as High 

Frequency Quasi Periodic Oscillations (HFQPOs) are estimated to be related to 
processes taking place at dis tances R  >!10RG , where RG ! GM" c2 .    Therefore, we 
can extend the theory given in earlier sectio ns by adopting effective gravitational 
potentials that include General Relativity effects and can be justified for these 
distances. In particular, when considering a no n-rotating black hole we use the 
Paczynsky-Wiita gravitational potential 

 
#G " $

GM"

R $ 2RG
. 

It is eas y to verify that this gives the correct radius (also known as ISCO) for the 
marginally stable orbit (RMS = 6RG ), that the rotation frequency is 
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As pointed out earlier !D
2  has a prominent role in Eqs. (*) and (***) and is one of 

the driving factors of the spectrum of modes that can lead to the formation of the 
considered configurations.  As we can see, !G  is increased by a factor 3 2  and !D

2  
by a factor 3 for R = 6RG  relative to the Newtonian values. 
 W e observe that, numerically,  RG ! 14.8 M" 10M"( )#$ %&  km and  RMS ! 89  

 M 10M"( )#$ %&  km.  Considering a d isk structure whose height is 2H, a t a given 

radius  R# RG , and a mass accretion rate  $M  about  10'9 M" yr , a rudimentary 
estimate of the plasma density may be made by an average mass conservation 

equation like 
 
! 2 $M HR#

$(
%
&)
* 5kms'1 VR#$ %& *1017 cm'3 where  

$M = $M 10'9 M" yr( ) ,  
H = H 103  km( ) , R = R 104  km( ) . The corresponding Keplerian velocity is 

V+ = c RG R( )1
2  

 
! 1.2 *104 M R( )1

2  km s'1 where  M = M" 10M"( ) . 
 We note that the radius RMS  depends in a significant way on the value of the 
angular momentum J = Jez  that a black hole can have.  This is characterized by 
the dimensionless parameter 

a" =
J

M"cRG
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with 0 < a! < 1,  a! " 1  being the so-called “extreme Kerr” limit.  When a! " 1, 

RMS = RG  (for a direct orbit), RMS = 9RG  (for a retrograde orbit) while RMS = 6RG  for 

a! = 0 , as indicated earlier. Another important radius associated with the Kerr metric to 

consider is that of the Ergosphere on the equatorial plane RE
0 = 2RG # RS .   As is well 

known, the Kerr metric is 

ds2 = $ 1$ 2RGr
ra

2

%
&'

(
)*
cdt( )2 $ 2FK( ) ad+( ) cdt( ) 

= r2 + a2 + a2Fk( )sin2, d+( )2 + ra
2

-a
2 dr

2 + ra
2 d+( )2 , 

where Boyer-Lindquist coordinates are used, ra
2 # r2 + a2 cos, , a # a!RG = J M!c( ) , 

-a
2 = r2 1$ 2RG r( ) + a2  and FK = 2rRG ra

2( )sin2, . 

In this case we may consider the effective potential for parti cles orbits in the plane 

z = 0 , whose radial velocity is given by    
!R2 2c2( ) +Veff R,  EN ,  L( )= EN c2 = E , where 
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Veff = ! RG

R
+ L

2 c2 ! 2a2E
2R2

! RG
R3

L
c
! a E +1"

#$
%
&'
2

    (***)  

and L  is the particle specific angular momentum.  For circular orbits  Veff = E   and 

dVeff dR = 0 , give  E  and  L  as functions of R .  Then the radius RMS  is obtained from 

d 2Veff dR2 = 0 . In particular, we may adopt Eq. (***) to add General Relativity 

corrections to the relevant theory developed in the Newtonian limit. 
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