Problems of Plasma Surface Interactions in Fusion Devices

Valery A. Kurnaev

National Nuclear Research University MEPhl

Plasma in astrophysics and in the laboratory. Ignitor challenge. Italian-Russian meeting 20-21June 2011

ITER Facility

- Highly integrated design

Materials choice

ITER will be the first tokamak in which plasma-facing components will play a major role in machine performance and availability → ITER must demonstrate that sustained fusion performance can be compatible with materials facing the plasma

54 divertor assemblies (~8.7 tonnes each) 4320 actively cooled heat flux elements Bakeable to 350°C

> First divertor (nonactive operation): CFC at strike points W on the baffles All-W for nuclear phase

Technical Challenges

• High steady state heat flux up to

10 MW/m2 (3000 cycles) & 20 MW/m2 (300 cycles)

- Material bonding techniques
- Remote handling
 requirements

Heat loads in fusion devices

Thermography of Tore Supra plasma faced component

R.Behrish et al

Turbulence at plasma edge

Blobs dynamics at the outer edge of Alcator C-Mod

Edge localized modes at NSTX

Plasma blob (a) and ELM filaments in NSTX tokamak

Start-up/ramp-down - Both LFS & HFS start-up scenarios are available

"Steady state" loads

Importance of magnetic equilibrium – position of separatrix

Far SOL plasma fluxes - far SOL tails in n_e and T_e due to turbulence driven convective (filamentary) transport

ELM wall loads - to convect power to far SOL regions through filamentary transport, \rightarrow Max ELM-averaged loads at upper X-pt: 12-24 MWm², (f_{ELM} = 20 – 40 Hz). To be added to the peak static load of 8 MWm⁻²

- Significant melting, bridging of castellation gaps, lifetime reduction
- Issues of operability on damaged targets, dust production

Physics of Retention & LID: overview

<u>plasma-wall-</u> interactions:

co-deposition of H in layers

e.g. amorphous hydrocarbon layers (a-C:H layers)

also: Be:H layers, W/C:H or Be/W/C:H etc. (mixed materials) implantation of H by plasma

Tritium retention

4kg of tritium will be held on ITER site \rightarrow only about 20 kg of tritium anywhere in the world at any one time!

- ITER predicted tritium accumulation rate is that experienced in JET
- Model <u>underestimates</u> JET retention by factor x40.

QSPA-T

1 MJ/m2

 $\frac{1}{1}$

- Main chamber erosion = divertor deposition model:
 - → 1500 3000 full burn shots before T-limit for Be/W
 - \rightarrow 100 1000 only for C/Be
- But these approximate calculations assume no net redeposition in the main chamber

→ The real situaiton could be worse

Tritium retention - experiments

Co-deposition / bulk

J. Roth, K. Sugiyama et al., 14th DivSOL ITPA, Korea, Oct. 2010

- Less retention at higher implantation temperature
- But need higher bake temperature to release

ITER main walls will operate between 150 - 200°C during burning plasmas but only ~100°C in non-active phases

co-deposition with Be can be high Retention in W (even irradiated) probably not a serious issue in ITER

R. P. Doerner et al., NF (2009) 035002

W in tokamaks

Fuzz formation at He irradiation of hot W surface

Surface Temp: 1000 K < T < 2000 K Ion Incident Energy>20 eV

NAGD

- Closed markers with nanostructure
 Open markers without nanostructure
- [4] M. Baldwin NF (2008).
- [7] W. Sakaguchi JNM (2009)
- [8] S. Kajita, NF (2007).
- [9] S. Kajita, NF (2009).
- [11] S. Kajita, J. Appl. Phys. (2006).
- [12] W. Sakaguchi, Proc. 18th Int. Toki Conf.
- [13] D. Nishijima, JNM (2004).
- [14] D. Nishiiima, JNM (2003).

Surface transformation in tokamak T-10

KTH Nanofabrication Lab

EHT = 12.00 kV Date :17 Aug 2006 WD = 15 mm Aperture Size = 30.00 µm Time :17:40 Gun Vacuum = 1.73e-009 mBar

EHT = 12.00 W Date :17 Aug 200 WD = 13 tem Aperture Size = 30.00 µm Time :18:21 Gen Viccem = 1.70=409 mBer

KTH Nanofabrication Lab

EHT = 15.00 kV WD = 9 mm Gun Vacuum = 2.00e-009 mBar

Mag = 2.35 K X

EHT = 12.00 kV Date :17 Aug 2006 WD = 15 mm Aperture Size = 30.00 µm Time :17:49 Gun Vacuum = 1.71e-009 mBar

Codeposits in tokamaks (T-10)

В.П.Будаев

14 конференция-семинар «ВЗАИМОДЕЙСТВИЕ ПЛАЗМЫ С **ПОВЕРХНОСТЬЮ»** МИФИ 4 февраля 2011г

Z range

T+: -36.552 ms Img#: -74 Cam: Phantom v.7 AcqRes: 800 x 600 Rate: 2000 Exp: 495 μs EDR: 0 μs First: -74 Last: 1039 Durat: 0.556 s Range data:

Arching in tokamaks

neutron

ECTON MECHANISM OF UNIPOLAR ARC...

Tungsten . BLISTERING

(cones and pyramids)

The temperature of blistering is specific for cooper irradiated with moderate fluxes. (T=480-520 K)

Fig.1. Blisters (cones and pyramids) on the W surface irradiated by high-flux (10²²m⁻²s), high-fluence (up to 10²⁷m⁻²) and low-energy (38 eV) deuterium plasma at T=480-520 K [1] . a) Small blisters, b) cavities inside them, c) pyramid-like big blister, d) cone-like big blister,

[1] W.M.Snu, M Nakamichi, V.KH. Alimov, G.-N. Luo, K. Isobe, T. Yamanishi et al. J. of Nucl. Mater. 390-391(2009)1071.

Tungsten : BLISTERING

Puc. Blisters on the W surface irradiated in deuterium plasma E =90 eV, Φ = 3,4 · 10²⁵ μ⁻², T= 550K [2]

The temperature of blister appearance is specific for cooper irradiated with moderate fluxes. (T=480-520 K)

2. Ohno 2007

Tungsten : FLAKING

The temperature of flaking is specific for cooper irradiated with moderate fluxes (T=618 K)

Fig.1. Flakes on the W surface irradiated by high-flux $(10^{22}m^{-2}s)$, high-fluence (up to $10^{27}m^{-2}$) and low-energy (38 eV) deuterium plasma at the temperature T= 618 K [1].

[1] W.M.Snu, M Nakamichi, V.KH. Alimov, G.-N. Luo, K. Isobe, T. Yamanishi et al. J. of Nucl. Mater. 390-391(2009)1071.

Tungsten : MELTING OF FLAKS

The temperature of flake melting Is estimated to be (T=1300-1400 K). It is the temperature range of cooper melting point

Local melting of W surface irradiated by high-flux (10²²m⁻²s), high-fluence (up to 10²⁷m⁻²) and low-energy (38 eV) deuterium plasma. Surface temperature is 618 K. Estimated temperature of flake melting is 1300-1400 K

[1] W.M.Snu, M Nakamichi, V.KH. Alimov, G.-N. Luo, K. Isobe, T. Yamanishi et al. J. of Nucl. Mater. 390-391(2009)1071.

Surface morphology is very sensitive to impinging fluxes fluctuations = turbulence Fractal structures can arise at a surface

PWI Ignitor features

In general close to Alcator C-Mod and FTU, but:

- Higher ion temperature
- Admixture of He ash
- Presence of tritium and other isotopes (H, ³He)
- Low Z_{eff}
- Neutron irradiation of first wall during the pulse and as a result long term secondary radioactivity
- Fusion reaction shut down
- High density regimes without divertor

PWI control is necessary!

On the base of W felt one element of FTU lithium limiter has been modified and tested

No surface deformation and damage of CPS structure after FTU test

By I.Lyublinsky et al Red Star, Rosatom

Module of lithium divertor will be placed on supporting structure of KTM

- Joint project: I.Lyublinsky et al, FSUE «Red Star», S.Mirnov, TRINITI, I.Tajibaeva IAE Kazakhstan
- G. Mazzitelli, ENEA RC Frascati, I. Agostini, ENEA RC Brasimone, Italy

Parameters of B₄C. SPUTTERING

Fig.3. Temperature dependence of the erosion yield due to 1 keV D+ sputtering and evaporation for various materials [6].

[6] J.Roth, J.Nucl.Mater. 176&177 (1990) 132-141

Parameters of B₄C. HYDROGEN RETENTION

Fig.4. Fluence dependence of hydrogen retention for different materials $(H^+, E_i=100 \text{ eV},$ $j=5.610^{19} \text{ m}^{-2})$ [7].

[7] L. Begrambekov, O. Buzhinsky, A. Gordeev, E. Miljaeva, P. Leikin, P. Shigin. Physica scripta, N108 (2004), p.72-75.

Parameters of B₄C. In situ coating deposition

Deposition conditions	Plasma providing total dissociation of the molecules of initial substance
Devices used for B ₄ C deposition	Tokamak T-11M, PISCES-B (T_e ~40 eV, n_e ~2·10 ¹⁷ m ⁻³ , electron flux~2·10 ¹⁷ m ⁻² c ⁻¹) [9].
Initial substance	Non-toxic, non-explosive, and non-hazardous carborane ($C_2B_{10}H_{12}$)
Deposition rate	≈ 30 nm/s (1µm/min) in PISCES-B discharge

[9] Buzhinskij O.I., Otroschenko V.G., Whyte D.G. et al. J. Nucl. Mater., 313—316 (2003) 214.

Advantages of B₄C coating

- B₄C coating will provide low rate erosion of divertor tile surfaces.
- B₄C coating will prevent erosion of the tiles as well as penetration of tritium into and trapping in the bulk of the tiles.
- B₄C coating can be deposited and renewed during regular tokamak discharges
- B₄C coating can withstand high thermal fluxes (13.0 M·W·m⁻²)
- Erosion of B₄C coating will lead to deposition of easily outgases and easily removed H/C/B films.
- Expanded investigation of deposition and behavior of B₄C coating in tokamak conditions is needed

PWI activity at PPhD of MEPhI

- Investigations on ions and plasma interactions with materials for controlled fusion devices started in our University more than 40 years ago due to proposal of Kurchatov Centre and Rosatom.
- For these years many original experimental facilities, devices, methods, codes were developed at MEPhI.
- 7 Dr Sci, ~30 Candidates and ~100 Masters of science in this field were trained in MEPhI and work now in Russia and other countries.

Experimental facilities (1)

Two- beam ion mass monochromator

E₁ =1-40 keV 1<M/Z<100, $\Delta E/E = 0.003$ P_{res}= 10⁻⁶ Pa E₂ =0.05-5keV 1<M/Z<40, $\Delta E/E = 0.03$ **Measurements:** energy, angular, charge resolved distributions of reflected and emitted particles.

The main ion channel

of two- beam ion mass monochromator

Linear simulator with PB discharge (1)

1– vacuum chamber, 2– diaphragms, 3– gas feeding, 4– magnetic coils, 5– cathode, 6– anode, 7– collector, 8– loading lock №1, 9– Lengmuir probe, 10– loading lock №2,11– build- in mass analyzer, 12– plasma column.

NEW – high flux irradiation in PBD

New – UHV TDS stand

The residual gas pressure: 10⁻⁹ mbar Linear heating ramp : 2 K/s Maximum temperature: 1600-1750 K

New MEPhI device for sample irradiation/implantation in plasma and for TDS analysis

Fig. 3. 1. The scheme of thermal desorptional stand TDS-2

1. Lock chamber.

- 1.1. Feed through of movable sample manipulator.
- 2. Ion gun chamber
- 2.1. Ion gun
- 2.2. Retarding and focusing system

3. Plasma chamber

- 3-1. Cathode
- 3-2. Anode
- 3-3. Probe
- 3-4. Screen
- 3-5. Air cooling system

4. TDS chamber

- 4-1. Quadruple mass-spectrometer
- 4-2. Plasma composition analysis line
- 4-3. TDS chamber water cooling
- 4-4. Sample manipulator sealing

5. Sample manipulator

- 5-1. Sample
- 5-2. Sample heater6. Working gas inlets
- 5. Working gas ini
- 7. Pumping
- 8. Gate valves
- 9. Pipe branches

Device for films deposition in hydrogen atmosphere and under plasma irradiation

Deposition rate		0.5 - 0.01 nm/s
Pressure of the deposition	H ₂	$1 \cdot 10^{-3} - 2.5$ Pa
atmosphere	H ₂ O	$5 \cdot 10^{-4} - 1 \cdot 10^{-2} \text{ Pa}$
Concurrent plasma irradiation	Ion energy	$\approx 10 - 1000 \text{ eV/atom}$
	Ion flux	$1 \cdot 10^{15} - 2 \cdot 10^{16} \text{ cm}^{-2} \cdot \text{s}^{-1}$
Substrate temperature		300 – 1500 K
Thickness		20 – 2000 nm

Computer simulations of ion interaction with solids

Simulation of plasma sprayed tungsten used as plasma faced material in German tokamak ASDEX

Sputtering of a cone with α =60° by Ar (1keV) ions at the incidence angle 30°

Sputtering of a cone with α =60° by Ar (1keV) ions at the incidence angle 630° к нормали

МИФИ, каф. 21

Conclusion

- PWI demonstrates very complicated and multifaceted physics
- PWI influences fusion device performance very much
- In spite of high plasma density and low temperature at the edge in Ignitor, PWI in this machine should be of keen interest and care.
- Relevant to Ignitor wall conditioning should be developed.

Thank you for your attention!