CosmilEmergetic particles acceleration in planet magnetospheres and in the Galaxy: unsolved problems"

Mikhail Panasyuk

Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University

"Plasma in Astrophysics and in the Laboratory: the Ignitor Challenge" Round table in the Italian Embassy, 20-22 June, 2011

Energy spectra of cosmic Solar wind (H) 10 rays (solar maximum) **Trapped radiation –** Earth's radiation belts **N OT SCALED** 0 Solar Galactic energetic **]** cosmic rays (H) particles (H) -10 1keV/n 1 MeVn 1 GeVn 1 TeVn //nucl) 12 3 9 6

CR astrophysics main problems

Sources ?

-Accelerators?

All particles energy spectrum of CR

Supernovae

1052 erg

Energy balance Ginzburg & Syrovatskii 1964 ~ 15% of SN kinetic energy should go to cosmic rays to maintain observed w_{cr} at W_{sn} =10⁵¹ erg, v_{sn} = 1/(30 yr)

Standard Model of Cosmic Ray Acceleration

SN 1987

$E_{max} \sim BLZ \approx 10^{14}Z eV$

Accelerated particles

Shock wave Diffusive shock acceleration

Fermi 1949, Krymsky 1977, Bell 1978,....

Сильные магнитные поля в остатках молодых сверхновых

Völk et al. magnetic field amplification in Tycho and other shell-type SNRs

 $B \sim 300 \ \mu G$, for Tycho's SNR

consistent with synchrotron spectrum from acceleration theory

Similar amplification in all other SNRs where such data are available: Cas A, SN 1006, Tycho, RCW 86, Kepler, RX J1713.7-3946, Vela Jr

diffusive shock acceleration of electrons, including synchrotron losses gives observed scale

very strong magnetic field in young SNRs is indirect but strong evidence of proton acceleration

Standard Model of Cosmic Ray Acceleration

SN 1987

E_{max}~BLZ ≈ 10¹⁷ eV

Accelerated particles

Shock wave Diffusive shock acceleration

Fermi 1949, Krymsky 1977, Bell 1978,....

CR astrophysics main problems

Sources ?

-Accelerators?

Mass composition of CR is the key for answer on this questions

CR nuclei spectra

Energy spectrum of CR

CR nuclei spectra below the knee

Average mass definition below "the knee" – the real test for current models

CR chemical composition & SN acceleration models 10¹⁸ Akeno CASA/MIA 10¹⁷ Protor 10¹⁶ Helium x 1/10 Grigorov SOKOL +------10¹⁵ Tibet3-All E^{2.5} dJ/dE [eV^{⊔.5}m⁻² sec⁻¹ sr⁻¹] Rvan +--▲---I Chicago 10¹⁴ C x 1/20 Ormes JACEE RUNJOB 10¹³ O x 1/200 BESS Ne x 1/200 10¹² Mg x 1/1000 Tibet:QG Tibet:SIBYLL 1011 Si x 1/5000 CREAM2 TRACER Kamioka 10¹⁰ Sul /104. HEAO-3 +---* Simon +---@----Ar / (5×104 10⁹ H.E.S.S.SIB ubFe / 10⁷ Ca / (2×10 10⁸ 10¹⁵ 10¹⁰ 10¹² 10¹³ 10¹⁸ 10⁹ 10¹¹ 10¹⁷ 10⁸ **Berezhko**

Primary Energy [eV/particle]

Proton and helium spectra and the multiplicity of types of cosmic ray sources

Beyond the 10*15 eV

Energy spectrum of CR

Mean mass composition dependence show enrichment by heavy ions <4.5 Yul> ATIC **TUNKA KASCADE** 3.5 JACEE 3 2.5 1.5 0.5 0 10⁸ 10⁶ 10³ 10⁵ 10⁷ 10⁹ 10² 10⁴ Energy per particle, GeV

Beyond the 10*17 eV

Chemical composition become more lighter beyond 10^17 eV?

So,

- Up to 10*17 eV
 – the transition region from light elements to heavier ones
- Beyond 10*17 eV the transition from heavier elements to light ones, or from galactic sources to extragalactic ones...

Instead of conclusions -

 Have we found the transition region between galactic and extragalactic sources already?

 Have we observed the LIMIT OF POWER of Galactic Accelerator egual to ~ 10¹⁵Z?

• What kind of accelerators are responsible for the origin of particles at 10*17 eV???

Do we know other shocks in the Universe?

SEP's acceleration by interplanetary shock waves

SEP acceleration by interplanetary shock waves

SEP

Shock

IMF

What is a efficiency of the CME to accelerate particles?

Earth's magnețosphere

Acceleration of SEP during propagation

CME acceleration

Berezhko (1999) : ions energy up GeV

CME shock acceleration

If these SEPs are accelerated by CMEdriven shocks, they use a significant fraction of the shock kinetic energy (~3% to 20%)

N.Gopalswami

Energy range of SEP: spectra

- direct measurements from space
- indirect measurements using geomagnetic cutoff
- NM and EAS arrays measurements on ground during GLE

SEP spectra from cutoff (sat. data) Coronas – F data

The question "does a shock wave propagating in the Corona accelerate particles up to ultra-relativistic energies " is being discussed

 Another acceleration mechanism have to be found...

SEP's acceleration by interplanetary shock waves

Magnetic reconnection as a main force for solar flare particle acceleration

Solar flare standard model

Particle Acceleration in Flares

 Acceleration by DC electric field in Reconnecting Current Layer

plus...

- Collapsing trap dynamics
- Stochastic dynamics (waves, shocks)

Scenario of acceleration process

After Somov & Bogachev

- Magnetic field lines move to the X-type neutral point

-The electric field is induced and accelerates particles

$$\mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{A}}{\partial t},$$

Magnetic reconnection as an injector

Evidences from observations

•Thermal and non-thermal HXR emission from the corona, can be interpreted as reconnecting super-hot turbulent-current layer (SHTCL)

Tsuneta S., Kosugi T.

Scenario of acceleration process

1.Magnetic reconnection as an injector

2.Electron capture and collaps of magnetic trapping region

Bethatron acceleration connected with collapse of magnetic loops with simultaneous Fermi acceleration (stochastic acceleration)

Reconnection region

Do we have bethatron acceleration some where else?

• Yes, nearby

Radiation belts

Radial diffusion -the main transport process of RB particles

D - diffusion coefficient as a critical parameter of radiation belts dynamics

SEP acceleration mechanism should explain experimental data:

Acceleration of

- Protons up to 1-10s 300MeV-~several GeV
- Electrons up to $\approx 0.5s$ 60-100MeV

Acceleration of protons and electrons

Protons can be accelerated up to GeV, but electrons **only** up to several MeV

Bogachev, et al

SEP acceleration mechanisms

A: Electric Fields: Parallel to B Field

B: Fermi Acceleration

1. Shocks: First Order Fermi

2. Stochastic Acceleration: Second Order Fermi

Do we have reconnection somewhere else?

Reconnection is everywhere

In the magnetospheres

At the Sun

Magnetic substorms/storms reconnection

Particles acceleration and movement to the Earth

Shock's acceleration is everywhere as well!

Shock's acceleration is everywhere as well!

GCR 10⁻³ cm-3

10⁻² nT

T ion ~ 10 eV Mach ~ 5 T ~ hours

10³ eV 100 minutes

The anomalous cosmic ray component

The main statements of the Fisk, Kozlovski Ramaty theory

Then...

Acceleration of ionized neutrals, 'picked-up' by the solar wind from ~4 keV/nucleon to >10 MeV/nucleon at the heliopause (termination shock);

The anomalous cosmic ray acceleration

Krymski (1977), Axford *et al.* (1977) and Blandford and Ostriker (1978):

FIRST ORDER FERMI OR COMPRESSIVE SHOCK ACCELERATION

10 MeV/ nucleon

Direct observation of ACR acceleration:

Voyager data

Stone et al. Science 2005 Cummings & Stone COSPAR 2006

ACR source(s)

Alternative (or complementary) approach:

Ionosphere plasma of "magnetic" planets enriched by O+ can be a source for ACR

Ionosphere as a source of plasma in the Earth's magnetotail

Magnetic substorms/storms reconnection

Double acceleration of ACR: during reconnection process in the magnetospheres of the giant planets plus acceleration at heliospheric TS

Heliosphere

Internal ACR source

Jupiter's magnetosphere, 0,1 A.U.

Cosmic Rays

Bow Shock

Thank you