
Operational Amplifiers
The operational amplifier (op-amp) was designed to perform mathematical 
operations. Although now superseded by the digital computer, op-amps are a 
common feature of modern analog electronics.

The op-amp is constructed from several transistor stages, which commonly 
include a differential-input stage, an intermediate-gain stage and a push-pull 
output stage. 
The differential amplifier consists of a matched pair of bipolar transistors or FETs. 
The push-pull amplifier transmits a large current to the load and hence has a small 
output impedance.

The op-amp is a linear amplifier with 

€ 

Vout ∝Vin  . The DC open-loop voltage gain of 
a typical op-amp is 102 to 106 . The gain is so large that most often feedback is 
used to obtain a specific transfer function and control the stability.



Before proceeding we define a few terms:

linear amplifier
- the output is directly proportional to the amplitude of input signal.
open-loop gain, A
- the voltage gain without feedback (  ≈105).
closed-loop gain, G
- the voltage gain with negative feedback (approximation to 

€ 

H( jω)  ).
negative feedback
- the output is connected to the inverting input forming a feedback loop (usually 
through a feedback resistor Rf ).

Cheap IC versions of operational amplifiers are readily available, making their use 
popular in any analog circuit. 
The cheap models operate from DC to about 20 kHz, while the high-performance 
models operate up to 50 MHz. 

A popular device is the 741 op-amp which drops off 6 dB/octave above 5 Hz.

Op-amps are usually available as an IC in an 8-pin dual, in-line package (DIP). 
Some op-amp ICs have more than one op-amp on the same chip.



Figure 1a shows a complete diagram of an operational amplifier. A more common 
version of the diagram is shown in figure 1b, where missing parts are assumed to exist. 
The inverting input means that the output signal will be 180o  out of phase with the 
input applied to this terminal. On the diagram +15V (DC) and  -15V (DC).  is 
typically, but not necessarily, +- 15V. The positive and negative voltages are 
necessary to allow the amplification of both positive and negative signals without 
special biasing.

Open-Loop Amplifiers

Figure.1:  a) Complete diagram of an operational amplifier and b) common diagram of an 
operational amplifier.

+Vcc=+15V

-Vcc=-15V



For a linear amplifier (cf. a differential amplifier) the open-loop gain is

  

€ 

r 
v out = A( jω)(

r 
v i −

r 
v )

The open-loop gain can be approximated by the transfer function

where Ao is the DC open-loop gain and Hlow is the transfer function of a passive low-
pass filter. We can write
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A( jω) = AoHlow( jω)

€ 

A( jω) =
Ao

1+ jω /ωo
where Ao~105 and fo~5 Hz

Two conditions must be satisfied for linear operation:

1. The input voltage must operate within the bias voltages: 

2. For no clipping the output voltage swing must be restricted to 

€ 

−Vcc ≤ vout ≤ +Vcc€ 

−Vcc / Ao ≤ (vi − v) ≤ +Vcc / Ao



Ideal Amplifier Approximation
The following are properties of an ideal amplifier, which to a good approximation are 
obeyed by an operational amplifier:

1. large forward transfer function,
2. virtually nonexistent reverse transfer function,
3. large input impedance, Zin -> ∞ (any signal can be supplied to the op-amp 

without loading problems),
4. small output impedance, Zout ->0 (the power supplied by the op-amp is not 

limited),
5. wide bandwidth, and
6. infinite gain, A ->∞ .

If these approximations are followed two rules can be used to analyze op-amp circuits:

Rule 1:
The input currents Ii and I are zero, Ii= I= 0 (Zin =∞  ).
Rule 2:
The voltages Vi and V are equal, Vi= V (A =∞  ).

To apply these rules requires negative feedback.

Feedback is used to control and stabilize the amplifier gain. The open-loop gain is too large 
to be useful since noise will causes the circuit to clip. Stabilization is obtained by feeding 
the output back into the input (closed negative feedback loop). In this way the closed-loop 
gain does not depend on the amplifier characteristics.



Non-inverting Amplifiers
Figure .2 shows a non-inverting amplifier, sometimes referred to as a 
voltage follower.

Figure 2:  Non-inverting, unity-
gain amplifier.

Applying our rules to this circuit we have
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Vi = V ⇒Vin = Vout

Ii = I = 0 ⇒ Rin = ∞

The amplifier gives a unit closed-loop gain, 

€ 

G( jω) =1 , and does not change the sign of 
the input signal (no phase change).
This configuration is often used to buffer the input to an amplifier since the input 
resistance is high, there is unit gain and no inversion. The buffer amplifier is also used 
to isolate a signal source from a load.



Often a feedback resistor is used as shown in figure .3.

Figure 3:  Non-inverting 
amplifier with feedback.

For this circuit

The gain is

with
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Vi = V ⇒Vin =
RI

RI + Rf

Vout

€ 

Vout

Vin

=
Ri + RI

RI

=1+
RF

RI

G( jω) =1+
RF

RI



Inverting Amplifiers

An inverting amplifier is shown in figure 4

Analysis of the circuit gives
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Vin −V
RI

=
V −Vout

RF

Since Vi = V = 0( V is at virtual ground),
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Vin

RI

=
−Vout

RF

The gain is
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Vout

Vin

=
−RF

RI

G( jω) = −
RF

RI

The output is inverted with respect to the input signal.

Figure 4:  Inverting amplifier.



The input impedance of the inverting 
amplifier is  Rin=Vin/I. 
Since Vin=IRI  we have  .Rin=RI
A better circuit for approximating an ideal 
inverting amplifier is shown in figure 

 Inverting amplifier with bias 
compensation.

The extra resistor is a current 
bias-compensation resistor. It 
reduces the current bias by 
eliminating non-zero current at 
the inputs.

A sketch of the frequency 
response of the inverting and 
non-inverting amplifiers are 
shown in figure



Mathematical Operations
Current Summing Amplifier
Consider the current-to-voltage converter shown in figure. Applying our ideal amplifier 
rules gives
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Vi = V = 0 ⇒ 0 −Vout = iRF

Therefore Vout=-iRF and the circuit 
acts as a current-to-voltage converter.

Figure  shows several current sources driving the 
negative input of an inverting amplifier. 

Summing the current
 into the node givesCurrent summing amplifier.
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V1

R1

+
V2

R2

+
V3

R3

= −
Vout

RF

If
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R1 = R2 = R3 ≡ R

€ 

Vout = −
RF

R
(V1 + V2 + V3)the output voltage is proportional to the 

sum of the input voltages.

For only one input and a 
constant reference voltage

€ 

Vout = −
RF

RI

Vin −
RF

RR

Vref

where the second term represents an offset voltage. This provides a convenient method for 
obtaining an output signal with any required voltage offset.



Differentiation Circuit

To obtain a differentiation circuit we replace the input resistor of the 
inverting amplifier with a capacitor as shown in figure 

Replacing RI with Zc = 1/(jω C)in the voltage 

gain gives
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Vout = G( jω)Vin = −
R
Zc

Vin = − jωRCVin = −RC dVin

dt

The frequency response is 
shown in figure



Integration Circuit

Integration is obtained by reversing the resistor and the capacitor as shown in figure . 
The capacitor is now in the feedback loop.

Analysis gives

We can combine the above inverting, 
summing, offset, differentiation and 
integration circuits to build an analog 
computer that can solve differential 
equations. However, today, the 
differentiators and integrators are mainly 
used to condition signals.
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G( jω) =
Vout

Vin

= −
Zc

R
=

−1
jωRC

⇒Vout =
−1
RC

Vindt∫

The frequency response is shown 
in figure



Active Filters

Filters often contain embedded amplifiers 
between passive-filter stages as shown in 
figure 13.

Figure 13:  Buffer amplifier as part of active filter.

These filters have a limited performance since the 
poles are still real and hence the knees are not sharp. 
For example, a three stage high-pass filter with buffer 
amplifiers has a transfer function
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G( jω) =
jω /ω c

1+ jω /ω c

jω /ω c

1+ jω /ωc

jω /ω c

1+ jω /ω c

=
− j(ω /ω c)3

(1+ jω /ω c )3

and only drops 18 db/octave.



For complex poles we must use either integrators or 
differentiators. Consider figure 14

Figure 14:  Active filter with complex poles.

The closed-loop gain is
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G =
−ZRC

RI

=
R / jωC

R (R + 1 / jωC)
=

−R
RI (1+ jωRC)

By exchanging the input resistor for a capacitor we can change between a low-pass and 
high-pass filter.



General Feedback Elements
The feedback elements in an operation amplifier design can be more complicated 
than a simple resistor and capacitor. An interesting feedback element is the analog 
multiplier as defined in figure 15.

Figure 15:  Five-terminal network that performs the multiplication operation on two voltage 
signals.

The multiplier circuit itself can be thought of as another op-amp with a 
feedback resistor whose value is determined by a second input voltage. 
Multiplication circuits with the ability to handle input voltages of either sign 
(four-quadrant multipliers) are available as integrated circuits and have a 
number of direct uses as multipliers. But when used in a feedback loop 
around an operational amplifier, other useful functional forms result.



The circuit of figure 16 gives an output that is the ratio of two 
signals, whereas the circuit of figure 17 yields the analog 
square-root of the input voltages.

Figure 16:  A multiplier as part 
of the feedback loop that results 
in the division operation.

Figure 17:  A multiplier as part 
of the feedback loop that results 
in the square-root operation.



Differential Amplifiers
The differential amplifier amplifies the difference between two input signals (-) and (+). 

This amplifier is also referred to as a differential-input single-ended output amplifier. It is 
a precision voltage difference amplifier, and forms the central basis of more sophisticated 
instrumentation amplifier circuits.

An amplifier is shown in figure 18. The 
voltage V3 is given by (cf. voltage divider)

Figure 18:  Differential amplifier.
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V3 =
R2

R1 + R2

V2

€ 

V1 −V2

R1

=
V3 −Vout

R2

    leads to Vout =
R2

R1

(V2 −V1)

and thus



Analysis Using Finite Open-Loop Gain

The infinite gain approximation is very useful but a more complete description is 
required if we are to understand the limitations of the op-amp.

 Real op-amps have a large but finite input impedance, small but non-zero output 
impedance and large but finite open-loop gain. 

They also have voltage and current asymmetries at the inputs. We will analyze some 
circuits using an finite open-loop gain and consider output impedance, input impedance, 
and voltage and current offsets.



An op-amp will in general have a small resistive output impedance from 
the push-pull output stage. We will model the open-loop output impedance 
by adding a series resistor  to the output of an ideal op-amp as shown in 
figure .

Output Impedance

Real, current-limiting 
operational amplifier partially 
modeled by an ideal amplifier 
and an output resistor.

Assuming no current into the input terminals (unloaded), and hence no current through 
Ro  , we have V1=Vout=V(open) . 
Using the open-loop transfer function V1=A(jω)(Vin-Vout) we obtain
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V (open) =
A( jω)

1+ A( jω)
Vin

Shorting a wire across the 
output gives Vout=0 and hence

€ 

I(short) =
V1

R0

=
A( jω)

R0

Vin



Using the standard definition 
for the impedance gives

€ 

Zout =
V (open)
I(short)

=
R0

1+ A( jω)

If A~Ao>>1 than Zout ~Ro/Ao, which is small as 
required by our infinite open-loop gain approximation

We can now draw the impedance outside the feedback loop and use
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A( jω ) =
A0

1+ jω /ωc

=
A0

1+
r 
s /ωc

to obtain
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Zout =
R0ωc + R0

r 
s 

ωc (1+ A0) +
r 
s 



The circuit can now be modeled by a resistor Ro/Ao in series with 
an inductorRo/(Ao ω) all in parallel with another resistor Ro (three 
passive components) as shown in figure 

An equivalent circuit for a 741-
type operational amplifier.

If the op-amp is used to drive a capacitive 
 load, the inductive component in the output 
impedance could set up an LCR resonant 
circuuit which would result in a slight 
peaking of the transfer function near the 
corner frequency as shown in figure 



Input Impedance
When calculating the output impedance we still assumed an infinite input impedance. In 
this section we will calculate the finite input impedance assuming a zero output 
impedance. We consider a model that assumes an internal resistor  connecting the 
inverting and non-inverting input terminals of the op-amp as shown in figure 31
Consider an inverting amplifier and remove the input resistor so that the input impedance 
can be calculated directly at the amplifier's input terminals.

Fig.31 Model for calculating 
the input impedance of the 
inverting amplifier.
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Zin =
V1

I1

The input impedance is defined 
by

and the current at the summing 
junction is

€ 

I1 =
V1

RT1

+ I2

The current through the feedback resistor is

and the output voltage is related to  by the 
open-loop gain

€ 

Vout = A( jω)(0 −V1)

€ 

I2 =
V −Vout1

RF



The resulting input impedance is thus
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Zin =
RT RF

RF + RT (1+ A( jω))

For large A

€ 

Zin =
RF

A( jω)

The closed-loop input impedance is thus small and almost independent of the 
large RF of the operational amplifier.

Now consider the non-inverting 
amplifier shown in figure 32

Fig.32 Model for 
calculating the input 
impedance of the 
non-inverting 
amplifier.

Now calculate the input 
impedance by recognizing that I1 
is much less than I2  , since  RT is 
much greater than R1 or R2 

€ 

Zin = RT
A( jω) + G( jω)

G( jω)
where G(jω) is the closed-loop gain of the amplifier. Notice that in contrast to the low input 
impedance for the inverting amplifier, the non-inverting amplifier exhibits a closed-loop input 
impedance that is much larger than the open-loop value RT .



Voltage and Current Offsets
Since op-amps are generally DC coupled, there will appear a nonzero output even 
when the inputs are grounded or connected to give no input signal. The voltage offset 
is the result of slightly different transistors making up the differential input stage. The 
voltage offset can be reduced by using an externally-adjustable bias resistor (voltage 
offset null circuitry).

The current offsets at the inverting and non-inverting input terminals are usually base 
currents into two identical bipolar transistors. Thus their difference can be expected to 
be much less than either base current alone. Using this fact the student should be able 
to explain the reason for having an extra resistor between the non-inverting input and 
ground for the inverting amplifier. The resistor should have a value equal to the input 
resistor and feedback resistor in parallel.

We define the following:

output offset voltage - The voltage at the output when the input voltage is zero (input 
terminals grounded).

common mode voltage - The voltage at the output when the voltage at the inverting and 
non-inverting inputs are equal.

common mode rejection ratio (CMRR) - The ratio of the op-amp gain when operating 
in differential mode to the gain when operating in common mode.

common mode rejection (CMR) - The ability to respond to only differences at the input 
terminals:  .



Current Limiting and Slew Rate
The presence of resistance at the output of the op-amp limits the current that the amplifier 
can deliver into a load, as shown in figure 33. Current limiting is a nonlinear property that 
invalidates the two normal approximation rules. When an op-amp is driven into a current-
limiting condition it goes into saturation and becomes a constant current source. For a 
large load the output signal will be voltage-limited. A similar breakdown of the rules 
occurs when the amplifier is driven into voltage-limited operation.

Figure 33:  a) Voltage-limited and current-limited operational regions for an 
operational amplifier and b) definition of slew rate and settling time for an 
operational amplifier.



The op-amp performance can be demonstrated by applying a step function to 
the input and observing the output response, as shown in figure 33b. The actual 
output will have a finite slope (slew rate) and overshoot the final voltage value. 
It then approaches the final voltage either exponentially or with some damped 
ringing. 

The slew rate and overshoot are nonlinear effects. The settling time after 
amplifier saturation is defined as the time between the edge of the applied step 
function and the point where the amplifier output settles to within some stated 
percentage of the target voltage value.



Problems
1  Consider the circuit below. (You may assume that the op-amps are ideal.)

1. Write an expression for the transfer function  . Express your result in terms of 
the amplitude of the output and the phase relative to the input. Let   k  ,     ,     F and     F. 
Do not simplify the algebra.

2. What are the (real) zeroes in the transfer function, if any?
3. What are the (real) poles in the transfer function if any?
4. Sketch the transfer function as a function of  on a log-log plot. Your sketch 

should show the slope of  in the large and small  limits, the corner frequencies, and the 
value of  at the corner frequencies.

5. Describe the dependence of the output on frequency at small and large 
frequencies in dB/octave.



Problem 2.

1. Write the two rules for the analysis of circuits which utilize ``ideal'' op-amps.
2. Write an expression for the potential  for the following circuit.

5. Let  Z1=1kOhm  and Z2= 10k  . Sketch a log-log plot showing the 
function  for the above circuit assuming that a general purpose op-amp such as 
the 741 is used.

6. The 741 op-amp has a corner frequencies of 4 Hz, DC open-loop 
gain of 2x10**5 and a fall off at high frequency of 6 dB/octave. What is the 
frequency domain over which the amplifier defined in part (c) will have 
constant gain? What is the gain of the amplifier in this frequency domain?



7. Suppose now that the impedance Z1 is replaced with a capacitor 
with a capacitance C . For frequencies much greater than 4 Hz, the 741 op-
amp will attenuate the signal if the product RC is greater than some maximum 
value. For a frequency of 50 kHz, what is the maximum value for C for which 
the op-amp 
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A (ω)  will not attenuate the output signal at high frequencies? 

Hint: If you sketch  and  , you will be able to see the constraint on  .

 Problem 3. Set up an operational amplifier circuit to solve the equation
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d2 x
dt2 + 5 dx

dt
+ 7x + 3= 0

Hint: the input is  .

€ 

d2x
dt2

Problem 4. Draw a schematic diagram of a circuit for which 

€ 

Vout = ln(Vin ) .
                                   Specify the limitations on the input voltage range, if any.


