Electroweak physics and the LHC
an introduction to the Standard Model (II)

Paolo Gambino
INFN Torino

LHC School Martignano
12-18 June 2006
Outline

- Prologue on weak interactions
- Express review of gauge theories
 (I) SM gauge sector
 - Hidden symmetries
 - SM Higgs sector (structure & consequences)
 - Precision tests of the SM
 - anomalous magnetic moments
 (II) Computing G_F
 - Global fit and the Higgs mass
 - Electroweak physics at LHC
Particle physics in one page

\[\mathcal{L}_{SM} = -\frac{1}{4} F_{\mu\nu}^a F^{a\mu\nu} + i\bar{\psi} D\psi \\
+ \psi_i \lambda_{ij} \psi_j h + h.c. \\
+ |D_\mu h|^2 - V(h) \\
(+ N_i M_{ij} N_j) \]

The gauge sector \((1) \)
The flavor sector \((2) \)
The EWSB sector \((3) \)
The \(v \)-mass sector \((4) \)

The quadrant of nature whose laws can be summarized in one page with absolute precision and empirical adequacy

One century to develop it, from Maxwell on

Can it be the end of the story?

Riccardo Barbieri

P.Gambino LHC School 2006

Naturalness of the SM

Electron mass shift in QED \[m_e = m_{e,0} \left[1 + 3\alpha/2\pi \ln \Lambda/m_{e,0} + \ldots \right] \]
similarly in SM. Even for very large \(\Lambda \) the shift is \(O(m_e) \). Chiral
symmetry protects the fermion masses

The Higgs sector in SM presents quadratic divergences:

\[\delta M_H^2 = \ldots + \ldots \sim \lambda \Lambda^2 + h_t^2 \Lambda^2 + \ldots \]

Scalar masses are not protected by any symmetry.
\[\Lambda \sim M_{\text{Planck}} \rightarrow \delta M_H^2 \sim 10^{38} \text{GeV}^2 \quad \text{unnatural} \]

> 30 orders of magnitude **fine tuning**. Why worry? SM is renormalizable!
But look at it from above...

Naturalness has long been guiding principle in extending the SM
Avoid scalars or introduce a symmetry that softens the divergence (susy)
What do we know about the Higgs?

Unlike gauge and flavor sectors, Higgs sector is (almost) unexplored. The Higgs mass parameterizes our ignorance of SSB. Direct searches at LEP: $M_H > 114.4$ GeV

Small excess observed by Aleph in the last few months of LEP2 with $M_H \sim 115$ GeV, but low statistical significance. Finding the Higgs and verifying its couplings would confirm the SSB mechanism and help understanding how to complete the SM

P.Gambino

LHC School 2006
Theory bounds on M_H (I)

Theory bounds follow from EXTRAPOLATING the SM to higher scales and demanding consistency.

The SM vacuum is sensitive to quantum corrections that deform the Higgs potential.

Require SM valid up to the Planck scale and stable (or sufficiently long-lived) vacuum.

The request $\lambda(\phi \sim \Lambda \gg v) > 0$ depends on initial conditions: m_H.

\Rightarrow LOWER BOUND $m_H \gtrsim 115$ GeV (Isidori, Ridolfi, Strumia, 2001)

Top mass plays a role because of large h_t that drives λ down.
The Higgs field self-coupling is

$$\lambda = \frac{m_H^2}{2v^2}$$

The coupling of $\lambda \phi^4$ grows with energy up to a *Landau pole* at Λ, where it blows up.

The SM cannot be extrapolated beyond Λ, which depends on the initial value, i.e. $m_H \lesssim 600$ GeV.

Discovering the Higgs boson would imply bounds on the SM cutoff: the scale at which New Physics becomes necessary (as far as we can trust these bounds)
Why we don’t believe in the SM

As we’ll see in a moment, the SM is quite successful, yet...

✓ it has many parameters (18), 3 replicas with no apparent reason
✓ it is incomplete: and gravity? Why is it so weak?
✓ it does not account for neutrino masses, nor explains their smallness
✓ it cannot explain dark matter, nor baryogenesis
✓ its extrapolation to very high energies is problematic: the huge hierarchy between Fermi and Planck scale is unstable
 naturalness hints at new physics \sim TeV, but do we understand naturalness?

the SM must have a UV completion that we don’t know yet:
 it is a (renormalizable!) low-energy effective theory.
 Dependence on the cutoff is power suppressed
Two complementary approaches to new physics

Direct production

Indirect search

Virtual effects of heavy particles (e.g. the Higgs boson) can be detected by precision measurements, despite the loop or power suppression.

Historically, indirect signals have often anticipated the discovery of new particles: charm, top...

new physics in muon g-2?
Precision tests of the SM

Serve double purpose: check SM (nowadays in particular SSB) and look for extensions. Having testing the main architecture of SM, current exps aim at detecting & studying virtual corrections (ex W,Z,t, H loops, possibly new physics): weak loops $\sim 1\% \Rightarrow$ need $O(0.1\%)$ accuracy

Need sophisticated perturbative calculations: $O(g^2, g^2 \alpha_s, g^2 h_t^2, \ldots)$ QED/QCD radiation, etc. Need clean quantities, that can be computed with high accuracy. In a few cases complete 2loop EW calculations ($M_W, \sin^2\theta_{\text{eff, lept}}$)

The SM is a renormalizable theory: we are screened from whatever completes it. The screening is power-like and roughly determines the precision required to probe New Physics scales $\gg M_W$

$$\Gamma_Z \sim \alpha m_W^2/\Lambda^2 : \text{tests scales beyond weak scale } \sim 1\%$$

Different exps test different sectors of the SM: EWSB, Flavour

Low energy EW exps: g-2, NC ($e^- e^-$, APV, νN), Z pole observables (LEP, SLC): Z properties and couplings, M_W (LEP2, Tevatron), M_t (Tevatron)

P.Gambino

LHC School 2006
The prototypical precision test

Dirac theory (1928) predicts $g_e = 2$
Since 1947, the anomalous magnetic moment $a_e = (g_e - 2)/2$
is a fantastic test of Quantum Field Theory (QED)

$$a_e^{\text{SM}} = \frac{\alpha}{2\pi} - 0.328 \left(\frac{\alpha}{\pi}\right)^2 + 1.181 \left(\frac{\alpha}{\pi}\right)^3 - 1.75 \left(\frac{\alpha}{\pi}\right)^4 + 1.7 \times 10^{-12}$$

Hadr & ew loops

$e^+ e^-$

Presently gives the best determination of α, with rel accuracy 4×10^{-9},5x more precise than Quantum Hall effect, 2x better than atom beam interferometry

Effect of virtual particles $\sim (m_e/M)^2$:
QED is a renormalizable theory, screened from the UV completion
The muon anomalous magnetic moment: can we test the SM?

Non-QED effects are suppressed by m_{μ}^2/Λ^2 but starting at 2loops Λ can also be the scale of strong interactions $\Lambda \sim M_\rho \sim 700\text{MeV}$!

$$d_{\mu}^{\text{exp}} = 116\,592\,080(60) \times 10^{-11}$$

$$d_{\mu}^{\text{SM}} = [116\,584\,706(3)_{\text{QED}} + 154(2)_{W,Z,H} + 6831(73)]_{\text{hadrons}} \times 10^{-11}$$

~2-3σ discrepancy: **New Physics** (Supersymmetry?) or due to uncalculable strong interaction effects?

Excellent place for new physics, low M_{μ} sensitivity: loop effects $\sim m_{\mu}^2/\Lambda^2$ but needs chiral enhancement: SUSY natural candidate at moderate/large tanβ
The spectral function can be measured in $e^+ e^- \rightarrow \text{hadr}$, in τ decays, and with radiative return.
Status of \((g-2)_\mu\)

<table>
<thead>
<tr>
<th>(a_{\mu}^{SM} \times 10^{11})</th>
<th>((a_{\mu}^{EXP} - a_{\mu}^{SM}) \times 10^{11})</th>
<th>(\sigma)</th>
<th>HLO Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>116591789 (76)</td>
<td>291 (98)</td>
<td>3.0</td>
<td>(e^+ e^-)</td>
</tr>
<tr>
<td>116591803 (95)</td>
<td>277 (114)</td>
<td>2.4</td>
<td>(e^+ e^-)</td>
</tr>
<tr>
<td>116591779 (76)</td>
<td>301 (98)</td>
<td>3.1</td>
<td>(e^+ e^-)</td>
</tr>
<tr>
<td>116591799 (63)</td>
<td>281 (89)</td>
<td>3.1</td>
<td>(e^+ e^-)</td>
</tr>
<tr>
<td>116591962 (70)</td>
<td>118 (95)</td>
<td>1.3</td>
<td>(\tau)</td>
</tr>
</tbody>
</table>

\(a_{\mu}^{HLO}(l\beta l) = 80\ (40) \times 10^{-11}\) in all table except angle brackets.

\(a_{\mu}^{HLO}(l\beta l) = 136\ (25) \times 10^{-11}\)

BUT still many disagreements between various experiments: eg new Belle results

M. Passera - 19.05.06
1994: fits to precision measurements (LEP etc.) give
\(M_{\text{top}} = 177 \pm 11 \pm 19 \) GeV

1994: top quark discovery at Fermilab with
\(M_{\text{top}} = 174 \pm 10 \pm 13 \) GeV

Great success of SM and of the experimental program

Can it be repeated with the Higgs boson?

Unfortunately the sensitivity is much lower \(\sim \log M_H \)
Decoupling and the SM

- **Decoupling theorem**: the effects of heavy particles are power-suppressed (up to a redefinition of the coupling) if theory remains renormalizable and no coupling is prop to the heavy masses. Ex. QED and QCD at low energy.

- **What with heavy top?**
 - SM not renormalizable any longer (gauge symmetry broken)
 - $h_t \propto m_t$ and W_L, Z_L couple like pseudo-Goldstone bosons

- $m_t^2 \sim 5M_W^2$ relatively large, often dominant correction (also $Z \rightarrow bb$)

$$\rho = 1 + \Delta \rho = \frac{3G_\mu (m_t^2 - m_b^2)}{8\pi^2 \sqrt{2}} + \ldots$$

- **What with heavy Higgs?** only logs in ew corrections

 difference with top: $m_t - m_b$ breaks expl O(4) custodial symmetry of Higgs potential that guarantees $\rho = 1$. Higgsless SM: non linear σ model
Precision tests (II)

Question was: can we determine M_H from precision observables?

<table>
<thead>
<tr>
<th>18 SM parameters (+ ν masses & mixings)</th>
<th>g = e/s_w</th>
<th>g' = g/c_w</th>
<th>ν = $2c_w M_z/g$</th>
<th>λ</th>
<th>g_s</th>
<th>6+3 masses</th>
<th>4 CKM masses</th>
</tr>
</thead>
<tbody>
<tr>
<td>α or $\alpha(M_z)$</td>
<td>$\sin^2 \theta_W$, M_Z</td>
<td>M_H</td>
<td>$\alpha_s(M_z)$</td>
<td>M_t, others mostly irrelevant</td>
<td>Irrelevant for flavor diag</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relative precision: 10^{-9} or 3.5 10^{-4} depends on def. 2 10^{-5} 2-3% 1.3%... ...

Other best known EW observables:

- $G_\mu (0.9 \times 10^{-5})$; $M_W (4 \times 10^{-3})$; $\sin^2 \theta_{\text{eff lept}} (0.8 \times 10^{-3})$; $\Gamma_1 (10^{-3})$

Info on M_H can be extracted from

- $\alpha(M_z), M_t, G_\mu, M_w \rightarrow M_H$

or

- $\alpha(M_z), M_t, G_\mu, \sin^2 \theta_{\text{eff lept}} \rightarrow M_H$

etc. : all exp and th uncertainties contribute to $\delta \log M_H$

P.Gambino

LHC School 2006
Natural relations

Mass-coupling relation \((\rho = 1 + O(g^2)) \)

\[
\frac{e^2}{g_0^2} = 1 - \frac{M_{W0}^2}{M_{Z0}^2} = \sin^2 \theta_W^0
\]

between bare quantities: have same divergences, finite rad corrections

since \(G_{\mu}^0 = \frac{g_0^2}{4\sqrt{2}M_{W0}^2} \)

\[
G_{\mu} = \frac{\pi \alpha(M_Z)}{\sqrt{2}M_W^2 (1 - \frac{M_W^2}{M_Z^2})} \frac{1}{(1 - \Delta r)}
\]

\[
G_{\mu} = \frac{\pi \alpha(M_Z)}{\sqrt{2}M_Z^2 \cos^2 \theta_{eff}^{lept} \sin^2 \theta_{eff}^{lept}} \frac{1}{(1 - \Delta r_{eff})}
\]

\(\Delta r, \Delta r_{eff} \) are two observables with very different top, H dependence!
They can be calculated with theory precision close to \(10^{-4} \)

Masses here are always **pole masses** (real part of the propagator pole)
Not a convenient parameter for the top mass (large higher orders)

Why \(\alpha(M_Z) \)?
Running α (I)

$\alpha \equiv \frac{e^2(0)}{4\pi} = \frac{e_0^2}{4\pi(1 + \pi(0))} = \frac{1}{137.03599890(50)}$

$\alpha(s) = \frac{\alpha}{1 - \Delta \alpha(s)}$

$\Delta \alpha(s) = \Pi(s) = \Pi_\gamma(0) - \text{Re}\Pi_\gamma(s)$

$$\Delta \alpha(s) = \frac{\alpha}{3\pi} \sum_f Q_f^2 N_{C_f} \left(\log \frac{s}{m_f^2} - \frac{5}{3} \right)$$

$\Delta \alpha(s) = \Delta \alpha(s)_1 + \Delta \alpha(s)_h + \Delta \alpha(s)_t$

$\Delta \alpha(s)_1 = 0.0331421$; $\Delta \alpha(s)_t = \frac{\alpha}{3\pi} \frac{4}{15} \frac{m_Z^2}{m_h^2} = -0.000061$

$\Delta \alpha^{(5)}_{\text{hadrons}}(M_Z^2) = 0.02777 \pm 0.00034$

Jegerlehner

$\alpha^{-1}(M_Z^2) = 128.925 \pm 0.046$

128.936 ± 0.046 BP 01

Setting scale of α typically means avoiding & resumming large QED logs

OPAL

Testing the running of α
Running α (II)

Non-perturbative hadronic contributions $\Delta \alpha^{(5)}_{\text{had}}(s)$ can be evaluated in terms of $\sigma(e^+e^- \rightarrow \text{hadrons})$ data via dispersion integral:

$$\Delta \alpha^{(5)}_{\text{had}}(s) = -\frac{\alpha s}{3\pi} \left(\int_{4m^2_F}^{E^2_{\text{cut}}} ds' \frac{R_{\gamma}(s')}{s'(s' - s)} \right) + \int_{E^2_{\text{cut}}}^{\infty} ds' \frac{R_{\gamma}^{\text{QCD}}(s')}{s'(s' - s)}$$

where

$$R_{\gamma}(s) \equiv \frac{\sigma^{(6)}(e^+e^- \rightarrow \gamma^{*} \rightarrow \text{hadrons})}{\frac{4\pi\alpha^2}{2s}}$$

P.Gambino

LHC School 2006

Compilation:
Davier, Eldelman et al. 02
Groshny et al. 91,
Chetyrkin et al. 97

Theory = pQCD:

Compilation:
Davier, Eldelman et al. 02
Groshny et al. 91,
Chetyrkin et al. 97

Theory = pQCD:
Computing the Fermi constant (I)

Muon decay in the Fermi Theory...

\[\tau_{\mu}^{-1} = \frac{G_{\mu}^2 m_{\mu}^5}{192\pi^3} f \left(\frac{m_e^2}{m_{\mu}^2} \right) \left(1 + \frac{3}{5} \frac{m_{\mu}^2}{m_W^2} \right) \left(1 + RC \right) \]

\[RC = \frac{\alpha}{2\pi} \left(\frac{25}{4} - \pi^2 \right) \left(1 + \frac{\alpha}{\pi} \left(\frac{2}{3} \ln m_{\mu} \frac{m_{\mu}}{m_e} - 3.7 \right) + \left(\frac{\alpha}{\pi} \right)^2 \left(\frac{4}{9} \ln^2 m_{\mu} \frac{m_{\mu}}{m_e} - 2.0 \ln m_{\mu} \frac{m_{\mu}}{m_e} \right) \right) + \cdots \]

\[G_{\mu} = 1.16637(1) \times 10^{-5} \text{ GeV}^{-2} \]

Wilson coefficient of Fermi operator

\[\Delta r \] gives radiative corrs to \(\mu \) decay after subtracting QED effects

RC insensitive to UV physics: QED corrections to muon decay are FINITE
Fermi operator of muon decay does not run with QED Hence \(\alpha (M_z) \)

Exp: \[\Delta r = -0.0282 \pm 0.0022 \] Electroweak corrections are observed
Computing the Fermi costant (II)

\[\Delta r = -0.0282 \pm 0.0022 \]

SM:

\[
\Delta r = -\frac{c_w^2}{s_w^2} \frac{3 G_\mu M_t^2}{8 \sqrt{2} \pi^2} + \frac{11}{12} \frac{G_\mu M_w^2}{\sqrt{2} \pi^2} \log \frac{M_H^2}{M_w^2} + \ldots
\]

Using the measured \(M_{\text{top}} \) and \(M_W \)
\(\Delta r (M_{\text{top}}^2) = -0.031 \pm 0.002 \)

Residual terms small \(\Rightarrow \) \(M_H \text{ cannot be large} \), \(M_{\text{top}} \) close to exp

P. Gambino

LHC School 2006
A detailed complete calculation leads to:

\[
m_W/(\text{GeV}) = 80.409 - 0.507 \left(\frac{\Delta \alpha_{eW}^{(5)}}{0.02767} - 1 \right) + 0.542 \left[\left(\frac{m_t}{178 \text{ GeV}} \right)^2 - 1 \right] - 0.05719 \ln (m_H/100 \text{ GeV}) - 0.00898 \ln^2 (m_H/100 \text{ GeV})
\]

\(m_W \) points to a light Higgs!

Like \(|\sin^2 \theta_{eff}|\)
Low energy tests of NC couplings

Low energy measurements of $\sin^2\theta_W$ can be presented as tests of its running

Need to evaluate theoretical errors in a sound way!
PV in Møller scattering

- Scatter polarized 50 GeV electrons off *unpolarized* atomic electrons
- Measure $A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = -A_{LR}$
- Small tree-level asymmetry

\[
A_{PV} = -mE \frac{G_F}{\sqrt{2} \alpha} \frac{16 \sin^2 \Theta}{(3 + \cos^2 \Theta)^2} \left(\frac{1}{4} - \sin^2 \theta_W \right)
\]

At tree level, $A_{PV} \approx 280 \times 10^{-9}$

- Suppressed \Rightarrow very sensitive to $\sin^2 \theta_w$ Large radiative corrections, $\approx -40\%$
- Large theory uncertainty from γZ VP $\approx 5\%$ can and should be reduced

Sensitive to new physics orthogonal or complementary to collider physics (PV contact interactions, loops...)

E158 at SLAC
first measurement of PV in Møller sc.

huge luminosity high polarization ($\sim 80\%$)
The NuTeV EW result

NuTeV measures ratios of NC/CC cross-sections in ν DIS

$$R_\nu \equiv \frac{\sigma(\nu N \to \nu X)}{\sigma(\nu N \to \mu X)} = g_L^2 + r g_R^2$$

$$R_{\bar{\nu}} \equiv \frac{\sigma(\bar{\nu} N \to \bar{\nu} X)}{\sigma(\bar{\nu} N \to \mu X)} = g_L^2 + \frac{1}{r} g_R^2,$$

R^{\exp} differ from these because of n_e contamination, cuts, NC/CC misID, 2nd generation, non isoscalar target, QCD-EW corr.: need detailed MC

NuTeV main new feature is having both ν and $\bar{\nu}$ beams. R_ν most sensitive to $\sin^2 \theta_W$, $R_{\bar{\nu}}$ control sample $\rightarrow m_c$. Approximately corresponds to PASCHOS-WOLFENSTEIN ratio

$$R_{PW} \equiv \frac{R_\nu - r R_{\bar{\nu}}}{1 - r} = \frac{\sigma(\nu N \rightarrow \nu X) - \sigma(\bar{\nu} N \rightarrow \bar{\nu} X)}{\sigma(\nu N \rightarrow \ell X) - \sigma(\bar{\nu} N \rightarrow \ell X)} = g_L^2 - g_R^2 = \frac{1}{2} - \sin^2 \theta_W$$

$$s_w^2(NuTeV) = 0.2276 \pm 0.0013_{\text{stat}} \pm 0.0006_{\text{syst}} \pm 0.0006_{\text{th}}$$

where $s_w^2 = 1 - M_w^2 / M_w^2$ (on-shell) Global fit: $s_w^2 = 0.2229 \pm 0.0004$

a $\sim 2.8\sigma$ discrepancy but with many theoretical open issues
Asymmetric sea and NuTeV

Without assumptions on the parton content of target

\[R_{PW} = \frac{1}{2} - s_W^2 + \frac{\tilde{g}^2}{Q} \left[u^- - d^- + c^- - s^- \right] \{1 + O(\alpha_s)\} \]

\[\tilde{g}^2 \approx 0.23 \quad Q^- \approx 0.18 \]

Davidson, Forte, PG, Rius, Strumia

\[q^- = \int dx \ x (q(x) - \bar{q}(x)) \]

Isospin violation in the pdfs

\[u_p(x) \neq d_n(x) \]

Non-isoscalar target: accounted by NuTeV. Uncertainty originally underestimated Kulagin '03

We cannot rely on models!

P. Gambino

LHC School 2006
Such a strange asymmetry

\[R_{PW} = \frac{1}{2} - s_W^2 + \frac{\tilde{g}^2}{Q^-} \left[u^- - d^- + c^- - s^- \right] \{1 + O(\alpha_s)\} \]

Strange quark asymmetry
Non-perturbatively induced by \(p \leftrightarrow K \Lambda \)
A positive \(s^- \) reduces the anomaly

NEW CTEQ analysis
• explores full range of parameters
• includes all available data

Only \(\nu \)-induced processes are sensitive to \(s^-(x) \)

Inclusive \(\nu \)-DIS

Dimuons (charm production)
NuTeV has found \(s^- = -0.0027 \pm 0.0013 \) but the analysis is inconsistent

P. Gambino
Bottom line on NuTeV

- Large sea uncertainties and other theoretical uncertainties reduce strongly the discrepancy
- Given present understanding of hadron structure, NuTeV is no good place for high precision physics
- Useful lesson for LHC!
Asymmetries at the Z^0 pole

\[A_{FB}^{0,f} = \frac{3}{4} A_e A_f \]

\[A_f = \frac{2 g_A g_V}{g_A^2 + g_V^2} \]

\[\frac{g_V}{g_A} = 1 - 4 \sin^2 \theta_{eff} \ll 1 \]

\[\sin^2 \theta_{eff}^{\text{lept}} = \frac{1}{4} \left[1 - \text{Re} \left(\frac{g_V}{g_A} \right) \right] \]

Different asymmetries (tau polarization, LR, LRFB) measure differently the same coupling factors. Assuming lepton univ. there is only one eff $\sin^2 \theta_{eff}^{\text{lept}}$ that can be measured also from A_{FB}^b:

\[\frac{1}{A_e} \frac{\partial A_e}{\partial \sin^2 \theta_W} \sim -55 \gg \frac{1}{A_b} \frac{\partial A_b}{\partial \sin^2 \theta_W} \sim -0.7 \]
Plot $\sin^2\theta_{\text{eff}}$ vs m_H

Exp. values are plotted at the m_H point that better fits given m_{exp}

Clearly leptonic and hadronic asymm.s push m_H towards different values
The “global” EWWG fit

$^{fit} \quad M_H = 89 \text{ GeV}, \quad M_H < 175 \text{ GeV at 95\%CL}$

$\chi^2/dof = 17.5/13 \quad 17.7\% \text{ prob}$

Clear preference for light Higgs, below 200 GeV

OVERALL, SM fares well
(does not include NuTeV, APV, g-2)
Mt-MW and Mt-MH correlations

Constraining power of MW and sin²θeff is similar at current precision ➔

P.Gambino
LHC School 2006
The blue band

\[\Delta \chi^2 \]

\[m_H \ [\text{GeV}] \]

\[\Delta \alpha^{(5)}_{\text{had}} = \]

- 0.02758 ± 0.00035
- 0.02749 ± 0.00012

incl. low \(Q^2 \) data

LEP-SLD EW Working Group

P. Gambino

LHC School 2006
The M_H fit

EWWG fits an arbitrary set
no $(g-2)_\mu$, no universality, no $b \to s\gamma$

Only a subset of observables
is sensitive to M_H

A fit to only the observables
sensitive to M_H has the **same central value**
and much **LOWER** probability
$O(1-2\%)$
New physics in the b couplings?

Root of the problem: old $\sim 3\sigma$ discrepancy between LR asymmetry of SLD and FB b asymmetry of LEP: in SM they measure the **same quantity**, $\sin^2\theta_{\text{eff}}$ (A_b is practically fixed in SM)

Needs **tree level NEW Physics** such that $|\delta g_R^b| >> |\delta g_L^b|$

Problematic and ad-hoc Choudhury et al, He-Valencia

P. Gambino

LHC School 2006
The Chanowitz argument

2 possibilities, both involving new physics:

a) $A_{FB}(b)$ points to new physics
b) it’s a fluctuation or is due to unknown systematics

without $A_{FB}(b)$, the M_H fit is very good, but in conflict with direct lower bound $M_H>114.4$ GeV

$$M_H^{fit} = 51 \text{ GeV}, \quad M_H < 110 \text{ GeV at } 95\% \text{CL}$$

Even worse if $\alpha(M_Z)$ from tau is used

If true, not difficult to find NP that mimics a light Higgs.
Non-trivially, SUSY can do that with light sleptons, $\tan\beta > 4$

Statistically weak at the moment is 5% small enough?

Very sensitive to M_t

P.Gambino

LHC School 2006
Other tests that do not enter the fit

$Z W \gamma$ self couplings

Based on WW cross section and angular distribution

P. Gambino

LHC School 2006
Overview of precision tests

EWSB: $O(0.1\%), \Lambda > 5 \text{ TeV (roughly)}$

Flavor: $O(2-10\%), \Lambda > 2 \text{ TeV (roughly)}$

The modern version of Universality
Electroweak physics at LHC

* determination of Higgs properties (mass, width, couplings) even a rough measurement can distinguish between 2HDM and SM

* W mass (goal 10 MeV) and width

* top mass (probably th limited) and couplings

* $\sin^2 \theta_{\text{eff}}^{\text{lept}}$ from FB asymmetries

* WW, WZ, ZZ production (triple gauge couplings)

* Large EW effects (Sudakov logs)
Possible impact of LHC ew measurements
Summary

* The SM is a beautiful and successful theory built on solid ground. Appreciation of its limitations does not exclude admiration for the ingenuity that went into it.

* Gauge symmetry is verified with excellent accuracy. The SM mechanism of SSB will be verified only by the Higgs discovery, although most present indications point to a light Higgs boson in the SM framework. Higgs discovery or disproval remains the first task for LHC.

* Despite the lack of serious evidence, new physics within the reach of LHC remains likely: we have good reasons for that. Yet, new physics must respect the precise experiments that agree with SM. Only delicate improvements on Higgs and flavor sectors seem plausible.

* New discoveries will have to be put in the context and interpreted. That’s why a strong program of precision EW physics is necessary.
The way to the future