

Testing 3+1 Neutrino Mass Models with Cosmology and Short-Baseline Experiments

Stefano Gariazzo

University of Torino, INFN of Torino

July 20, 2013

Neutrino models

Short Baseline (SBL) experiments \Rightarrow mixing parameters:

- mixing angles and phases
- mass differences:

 $\left. \begin{array}{l} \Delta m^2_{SOL} = (7.6 \pm 0.2) \cdot 10^{-5} \ eV^2 \\ \Delta m^2_{ATM} = (2.32^{+0.12}_{-0.08}) \cdot 10^{-3} \ eV^2 \\ \Delta m^2_{SBL} \geq 0.1 \ eV^2 \end{array} \right\} \Rightarrow$

Neutrino oscillations anomaly: Δm_{SBL}^2 . See Hannen lecture, or Giunti, Laveder, 2011. Existence of an additional neutrino degree of freedom, mass around 1 eV, no weak interaction \Rightarrow *sterile*.

Mixing:
$$\nu_{\alpha} = \sum_{k=1}^{3+1} U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau, s)$$

Additional ν in cosmology: distribution function $f_s(p) = \frac{\beta_s}{e^{\rho/\alpha_s T_{\nu}} + 1}$ Contribution of the ν_s to cosmology described with: Acero, Lesgourgues, 2009

•
$$\Delta N_{\text{eff}} = N_{\text{eff}} - 3.046$$
: $\rho_R = \left[1 + \frac{7}{8} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^4 N_{\text{eff}}\right] \rho_{\gamma}$, it becomes $\Delta N_{\text{eff}} = \beta_s \alpha_s^4$

• $m_s^{\text{eff}} = (94.1 \text{ eV}) \, \omega_s = \rho_s / \rho_c^0$, from which we obtain $m_s^{\text{eff}} = m_s \beta_s \alpha_s^3$

Constant is given by $\sum m_i =$ (94.1 eV) ω_{ν} for SM neutrinos.

Problem: 2 observables ($\Delta N_{\text{eff}}, m_s^{\text{eff}}$), 3 parameters (α_s, β_s, m_s)!

Stefano Gariazzo Testing 3+1 Neutrino Mass Models with Cosmology and Short-Baseline Experiments

1

Grid of models for the CosmoMC analysis

For the SBL prior on m_s , we must simplify. Consider different scenarios:

- Thermal (TH): thermalized ν_s , $\alpha_{TH} \neq 1$, $\beta_{TH} = 1 \Rightarrow m_{TH}^{\text{eff}} = m_s (\Delta N_{\text{eff}}^{TH})^{3/4}$
- ► Dodelson, Widrow, 1994 (DW): $\alpha_{DW} = 1$, $\beta_{DW} \neq 1 \Rightarrow m_{DW}^{\text{eff}} = m_s \Delta N_{\text{eff}}^{DW}$

MCMC with CosmoMC with different cosmological data:

- CMB: Planck TT spectra and WMAP 9-year full data.
- high-I spectra from Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT).
- Barionic Acoustic Oscillations (BAO): values obtained from the SDSS-DR7, the SDSS BOSS-DR9 and the 6dFGS.
- H_0 prior: $H_0 = 74.7 \pm 1.6 \text{ km s}^{-1} \text{ Mpc}^{-1}$, from
 - $H_0 = 73.8 \pm 2.4 \text{ km s}^{-1} \text{ Mpc}^{-1}$, using Cepheids and SN Ia Riess et al., 2011;
 - $H_0 = 74.3 \pm 2.1 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$, by the *Carnegie Hubble Program* Freedmann et al., 2012;
 - ► H₀ = 78.7^{+4.3}_{-4.5} km s⁻¹ Mpc⁻¹, using COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL) and Hubble Space Telescope data, Suyu et al., 2012.
- All datasets: CMB+H₀+BAO+high-I

Assume: $\sum m_{
u, active} = 0.06 \text{ eV}, \quad 0 \le m_s^{\mathrm{eff}}/\mathrm{eV} \le 5, \quad 3.046 \le N_{\mathrm{eff}} \le 6$.

Stefano Gariazzo

Testing 3+1 Neutrino Mass Models with Cosmology and Short-Baseline Experiments

Results (briefly) - I

If we include SBL prior on m_s (DW or TH scenario):

- *m*^{eff}_s > 0 eV at 99% CL (All datasets)
- ▶ $N_{\rm eff}$ < 4 at 99% CL (All datasets) \Rightarrow no more than one ν -equivalent relativistic dof
- N_{eff} lower limit:
 - N_{eff} > 3.046 at 99% CL (DW, All datasets)
 - *N*_{eff} > 3.046 at 95% CL (TH, All datasets)
- → existence of additional relativistic dof, but not thermalized as the active SM neutrinos

Stefano Gariazzo

Testing 3+1 Neutrino Mass Models with Cosmology and Short-Baseline Experiments

Results (briefly) - II

SBL prior effect on m_s^{eff} , ΔN_{eff} joint posterior:

- it removes tail at △N_{eff} ≃ 0, m^{eff}_s > 1 eV (ν_s as CDM)
- it forces the shape of the joint 2D posterior
- tension between SBL and H₀ prior:
 - SBL: m_s^{eff} > 0
 H₀: m_s^{eff} ≃ 0, high N_{eff}

Thank you for the attention!

See also: Gariazzo, Giunti, Laveder (in preparation)

Stefano Gariazzo

Testing 3+1 Neutrino Mass Models with Cosmology and Short-Baseline Experiments

Backup pictures - Results without SBL prior

Testing 3+1 Neutrino Mass Models with Cosmology and Short-Baseline Experiments

Backup pictures - SBL prior, DW scenario

Testing 3+1 Neutrino Mass Models with Cosmology and Short-Baseline Experiments

Backup pictures - SBL prior, thermal scenario

Testing 3+1 Neutrino Mass Models with Cosmology and Short-Baseline Experiments

SBL and reactor anomaly

Neutrino oscillations \Rightarrow angles in the mixing matrix, Δm_{ij}^2 . Problem: observed anomalies in short baseline experiments \Rightarrow deviations from standard 3- ν description?

A short review: Fan, Langacker, 2012

- LSND: search for v

 µ
 → v

 e, with L/E = 0.4 ÷ 1.5 m/MeV. Observed a 3.8σ excess of v

 e events.
- MiniBooNE: search for ν_μ → ν_e and ν
 _μ → ν
 _e, with L/E = 0.2 ÷ 2.6 m/MeV. No ν_e eccess detected, but ν
 _e excess observed at 2.75σ (2010). 2011 results: excess favored at 91.1% CL for L/E = 0.2 ÷ 1.13 m/MeV.
- ▶ *Reactor anomaly*: re-evaluation of the expected anti-neutrino flux \Rightarrow deficit of $\bar{\nu}_e$ events compared to predictions (mean 5.7%, at 98.6% CL) with *L* < 100 m.

Possible explanation: oscillations between active ν and a sterile ν at eV scale. Possible models:

- ▶ 3 active ($m_i \ll 1 \text{ eV}$) + 1 sterile ($m_s \simeq 1 \text{ eV}$)
- ▶ 3 active ($m_i \ll 1 \text{ eV}$) + 2 sterile ($m_s \simeq 1 \text{ eV}$)

Some analysis: Giunti, Laveder, 2011 and Kopp, Maltoni, Schwetz, 2011 Stefano Gariazzo Testing 3+1 Neutrino Mass Models with Cosmology and Short-Baseline Experiments