

Reconciling cosmology and short-baseline experiments with invisible decay of light sterile neutrinos

Based on arXiv:1404.1794, arXiv:1404.6160

Stefano Gariazzo http://personalpages.to.infn.it/~gariazzo/ gariazzo@to.infn.it

University of Torino, INFN of Torino

May 29 - Cortona - New Frontiers in Theoretical Physics

Neutrino Oscillations - I

- neutrino existence proposed by Pauli (1930) to explain β decay
- first time observed in 1956 by C. Cowan, F. Reines
- oscillations proposed in 1957 by B. Pontecorvo
- "massless" until oscillations detected in 1998 (SuperKamiokande)
- *ν* oscillate only if they have different masses (even if very small)
 ⇒ not all of them are massless

Neutrino oscillations: analogous to CKM mixing for quarks, with

$$u_{lpha} = \sum_{k=1}^{3} U_{lpha k} \nu_k \quad (lpha = e, \mu, \tau)$$

1

 ν_{α} flavour eigenstates, $U_{\alpha k}$ PMNS mixing matrix, ν_{k} mass eigenstates.

Neutrino Oscillations - II

Oscillations sensitive only to mass differences, not to absolute mass scale!

Effective 2 neutrino mixing ($\Delta m_{21}^2 = m_2^2 - m_1^2$, θ_{12} mixing angle):

$$P_{\alpha o eta, lpha
eq eta} = \sin^2(2 heta_{12})\sin^2\left(rac{\Delta m_{21}^2 L}{4E}
ight)$$

Current knowledge of the active ν mixing:

$$\begin{array}{ll} \Delta m^2_{SOL} &= (7.50 \pm 0.20) \cdot 10^{-5} \ \mathrm{eV}^2 &= \Delta m^2_{21} \\ \Delta m^2_{ATM} &= (2.32^{+0.12}_{-0.08}) \cdot 10^{-3} \ \mathrm{eV}^2 &= |\Delta m^2_{32}| \simeq |\Delta m^2_{31}| \\ \sin^2(2\theta_{12}) &= 0.857 \pm 0.024 \\ \sin^2(2\theta_{23}) &> 0.95 \\ \sin^2(2\theta_{13}) &= 0.095 \pm 0.010 \\ \mathrm{PDG} \ \mathrm{-} \ \mathrm{Beringer \ et \ al. \ (2013)]} \end{array}$$

CP violation possible only if $\sin \theta_{13} \neq 0$ CP violating phase still unknown.

SBL and reactor anomaly

Problem: observed anomalies in short baseline experiments \Rightarrow deviations from standard 3- ν description?

A short review: [Fan, Langacker, 2012]

- ► LSND: search for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.4 \div 1.5$ m/MeV. Observed a 3.8σ excess of $\bar{\nu}_{e}$ events [Aguilar et al., 2001]
- ▶ *MiniBooNE*: search for $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.2 \div 2.6$ m/MeV. No ν_{e} excess detected, but $\bar{\nu}_{e}$ excess observed at 2.8 σ [MiniBooNE Collaboration, 2013]
- Reactor anomaly: re-evaluation of the expected anti-neutrino flux \Rightarrow excess of $\bar{\nu}_e$ events compared to predictions ($\sim 3\sigma$) with L < 100 m [Azabajan et al, 2012]
- Gallium anomaly: GALLEX and SAGE Gallium solar neutrino experiments give a 2.7σ anomaly (disappearance of ν_e) [Giunti, Laveder, 2011]

Possible explanation:

$$\Delta m^2_{SBL} \simeq 1 \; {
m eV}^2$$

Further details: [Giunti et al., 2013]

3

Sterile Neutrino mass

SBL anomaly
$$\Rightarrow \Delta m_{SBL}^2 \simeq 1 \text{ eV}^2$$
 [Giunti et al., 2013]
 \Downarrow
Existence of an additional neutrino degree of freedom,
mass around 1 eV, no weak interaction \Rightarrow sterile.
 \Downarrow

3 active ($m_i \ll 1 \, \, {
m eV}$) + 1 sterile ($m_s \simeq 1 \, \, {
m eV}$) u scenario

We must update our mixing paradigm:

$$\nu_{\alpha} = \sum_{k=1}^{3+1} U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau, s)$$

 $\begin{matrix} \text{[Giunti et al, 2013]} \\ 0.82 \leq \Delta m_{SBL}^2 / \text{ eV}^2 \leq 2.19 \\ (3\sigma) \end{matrix}$

 ν_s is mainly ν_4 :

$$m_s \simeq m_4 \simeq \sqrt{\Delta m^2_{SBL}}$$

Additional Neutrino in Cosmology

Sterile ν in cosmology: distribution function $f_s(p) = \frac{\beta_s}{e^{p/\alpha_s T_{\nu}} + 1}$

Contribution of the u_{s} to cosmology described with: [Acero, Lesgourgues, 2009]

• $\Delta N_{\text{eff}} = N_{\text{eff}} - 3.046$: $\rho_R = \left[1 + \frac{7}{8} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^4 N_{\text{eff}}\right] \rho_{\gamma}$, it becomes $\Delta N_{\text{eff}} = \beta_s \alpha_s^4$ • $m_s^{\text{eff}} = (94.1 \text{ eV}) \,\omega_s = \rho_s / \rho_c^0$, from which we obtain $m_s^{\text{eff}} = m_s \beta_s \alpha_s^3$ Constant is given by $\sum m_i = (94.1 \text{ eV}) \,\omega_{\nu}$ for SM neutrinos.

Problem: 2 observables (ΔN_{eff} , m_s^{eff}), 3 parameters (α_s , β_s , m_s)!

Hp: ν_s follows a thermal distribution with $T_s = \alpha_s T_{\nu}$ and $\beta_s = 1$.

$$\Rightarrow m_{TH}^{\mathrm{eff}} = m_s \, (\Delta N_{\mathrm{eff}}^{TH})^{3/4}$$

Parameters

In the following we will study the Universe evolution considering a $\Lambda CDM + r_{0.002} + \nu_s$ model with 9 free parameters:

$$\{\omega_{CDM}, \omega_b, \theta_s, \tau, \ln(10^{10}A_s), n_s\} + r_{0.002} + \{\Delta N_{\text{eff}}, m_s\}$$

$$\begin{split} & \omega_{CDM} \ - \ \text{CDM density today} \\ & \omega_b \ - \ \text{baryon density today} \\ & \theta_s \ - \ \text{angular sound horizon} \\ & \tau \ - \ \text{optical depth to reionization} \\ & \ln(10^{10}A_s) \ - \ \text{amplitude and} \\ & n_s \ \text{tilt of the primordial power spectrum} \end{split}$$

 $r_{0.002}$ - tensor to scalar ratio at 0.002 Mpc⁻¹

6

 $\Delta N_{
m eff}$ effective number of u_s m_s physical mass of u_s

Assume:

- $\sum m_{
 u, \mathrm{active}} = 0.06$ eV (minimal for Normal Hierarchy)
- ▶ $0 \le m_s/\text{eV} \le 3.5$
- ► $0 \le \Delta N_{\rm eff} \le 3$

Datasets for the CosmoMC analysis

MCMC with CosmoMC with different cosmological data:

- Planck: Planck TT spectra
- WP: WMAP 9-year polarization data.
- high-l spectra from Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT).
- BICEP2 B-modes autocorrelation power spectrum.
- LSS: WiggleZ Dark Energy Survey matter power spectrum at 4 different redshifts.
- $H_0: H_0 = 73.8 \pm 2.4 \text{ km s}^{-1} \text{ Mpc}^{-1}$, using Cepheids and SN Ia.
- ► CFHTLens: the CFHTLens 2D cosmic shear correlation function (from redshifts and shapes of 4.2 million galaxies with 0.2 < z < 1.3).</p>
- *PSZ*: 189 galaxy clusters identified through the Sunayev Zel'Dovich effect from Planck SZ catalogue.
- SBL data included as a prior on m_s .

In the following: $CMB = Planck+WP+high-\ell+BICEP2(9b)$

Results - I

First tension: $r_{0.002}$ (with and without BICEP2) We must wait Planck 2014 data release, with polarization data

- No significant variations using different CMB dataset:
 - Planck+WP+high-ℓ+BICEP2(9b)
 - ► Planck+WP+high-ℓ+BICEP2(5b)
 - Planck+WP+BICEP2(9b)

Notice: ΔN_{eff} larger with BICEP2 (indirect correlation with $r_{0.002}$ through n_s)

Results - II

Second tension: m_s vs ΔN_{eff} (with and without SBL)

Notice: small $\Delta N_{\rm eff}$ if $m_s \sim 1 \text{ eV}$ $\Rightarrow \nu_s$ cannot be fully thermalized, $\Delta N_{\rm eff} \ll 1 \rightarrow T_s \ll T_{\nu}$

Notice: CFHTLenS and PSZ data give a preference (> 2σ) for $m_s > 0$, but $m_s \sim 0.5$ eV and lower than 1 eV at > 2σ

Results - III

2D marginalized posterior distribution for $\Delta N_{\rm eff}$, m_s

Comparison:

- CMB only
- complete dataset

with and without SBL data

Results - IV

Third tension: H_0

- Planck vs local measurements
- \blacktriangleright value inferred from CMB highly model-dependent: correlation with $N_{\rm eff}$
 - \Rightarrow higher values if BICEP2 included (higher $N_{\rm eff}$)
 - \Rightarrow smaller values if SBL included (smaller $N_{\rm eff}$)

11

Cosmological invisible decay of light sterile neutrinos

Proposed solution for solve the encountered tensions: ν_s can decay - lifetime τ_s comparable with Age of the Universe t_U

Decay products belong to the sterile sector \Rightarrow very weak interaction, invisible

Effective number of ν_s : $N_s(t) = \Delta N_{\text{eff}} \cdot e^{-t/\tau_s}$ τ_s assumed to be constant (no energy dependent).

Decay products have negligible mass: they can be accounted as radiation with effective number $N_{dp}(t) = \Delta N_{\rm eff} \cdot (1 - e^{-t/\tau_s})$ Energy distribution of the invisible decay products neglected for simplicity.

Computational problem: time t depends on the energy density contributions. Approximation: t calculated considering matter dominated universe. True except:

- initial radiation domination very short
- final Λ domination largest part of ν_s has decayed

Results - I

 $\Delta N_{
m eff} = 1$ is allowed

 H_0 compatible with local measurements (HST)

With sterile neutrino decay, $\Delta N_{\rm eff}$ and H_0 are at the same level than the ones without SBL prior

Results - II - CMB only

High $\Delta N_{\rm eff}$ even with SBL mass Correlation between $\Delta N_{\rm eff}$ and H_0 recovered

Results - III - full dataset

 Ω_{ν_s} can explain cluster data since it is related both to m_s and $\Delta N_{\rm eff}$: $\Omega_{\nu_s} \propto N_s(t)^{3/4} m_s$

Correlation between ΔN_{eff} and H_0 recovered

Shape in $\Delta N_{\mathrm{eff}} - H_0$ plot due to volume effects in the Bayesian analysis

Conclusions

- Anomalies with the 3-v mixing scenario, solved with additional sterile neutrino.
- ► Analysis with cosmological and SBL data has some problems:
 - tensor to scalar ratio, Planck vs BICEP2
 - properties of the additional sterile neutrino
 - H₀ parameter
- invisible decay of ν_s can explain part of these problems.

Thank you for the attention!

Further details: [Archidiacono, Fornengo, Gariazzo, Giunti, Hannestad, Laveder, arxiv:1404.1794] [Gariazzo, Giunti, Laveder, arxiv:1404.6160] Correlation between $r_{0.002}$ and $\Delta N_{\rm eff}$

BICEP2: higher $r_{0.002}$ that correspond to more large-scale fluctuations.

Primordial power spectrum: $\mathcal{P}_k = A_s (k/k_0)^{n_s-1}$ k_0 pivot scale, A_s amplitude, n_s tilt

Higher $r_{0.002}$ can be compensated with an increase of $n_s \rightarrow$ decrease of large-scale fluctuations

Increase of $n_s \rightarrow$ increase of small-scale fluctuations $(k \gg k_0)$ $\downarrow \downarrow$ Effect can be compensated with an increase of $N_{\text{eff}} \rightarrow$ decrease of small-scale fluctuations due to free streaming of relativistic particles