

Constraints on Light Sterile Neutrinos from CMB and Cosmological Measurements

Based on [SG et al., JHEP 1311 (2013) 211] [SG et al., arxiv:1412.7405]

Stefano Gariazzo

Supervisors: C. Giunti N. Fornengo

University of Torino, INFN of Torino

February 17, 2015, Torino - Second Year Seminar

Introduction

- Cosmological Observations
- Tensions between local and CMB measurements
- Neutrino Oscillation Anomalies

2 Light Sterile Neutrino in Cosmology

- Cosmological Model
- Planck 2013 constraints
- Large Scale Structures constraints

Inflationary Freedom

- The Inflationary Paradigm
- Primordial Power Spectrum Parametrization
- Results

Introduction

- Cosmological Observations
- Tensions between local and CMB measurements
- Neutrino Oscillation Anomalies

2 Light Sterile Neutrino in Cosmology

- Cosmological Model
- Planck 2013 constraints
- Large Scale Structures constraints

Inflationary Freedom

- The Inflationary Paradigm
- Primordial Power Spectrum Parametrization
- Results

Cosmic Microwave Background (CMB)

First predicted in 1948 (Alpher, Herman): blackbody background radiation at $T \simeq 5$ K. Discovery (accidental): Penzias, Wilson 1964 \rightarrow Nobel prize 1978

Observations: perfect black body spectrum at $T_{\rm CMB}=2.72548\pm0.00057$ K $_{\rm [Fixsen,\ 2009]}$ \rightarrow CMB is a remnant of the Big Bang.

Anisotropies at the level of 10^{-5} : very high precision measurements are needed. Improvement of the CMB experiments in 20 years:

Planck DR1 results

Planck DR2 results - I

Planck DR2 results - II

- TE cross-correlation and EE auto-correlation measured with high precision;
- ΛCDM explains very well the data;
- Note: in the plots, the red curve is the prediction based on the TT only best-fit for ∧CDM model → very good consistency between temperature and polarization spectra.

[Planck Collaboration, 2015]

The BICEP2 experiment

[BICEP2, 2014]: claim for detection of primordial tensor modes.

Non-zero value for tensor-to-scalar ratio r.

March 2014: $r = A_t(k_\star)/A_s(k_\star) = 0.2^{+0.07}_{-0.05}$

Conclusion, from the joint analysis: $r_{0.05} < 0.12$ at 95% CL.

Constraints on Light Sterile Neutrinos from CMB and Cosmological Measurements

[Planck Intermediate Results XXX, 2014]

Power

South

Tension I: Hubble parameter

Hubble parameter today: $v = H_0 d$, with $H_0 = H(z = 0)$

Local measurements: H(z = 0), local and independent on evolution (model independent, systematics?)

CMB measurements

(probe $z \simeq 1100$):

 H_0 from the cosmological evolution (model dependent, well controlled systematics)

o Efstathiou Planck ∆CDM, Spergel Planck ACDM Planck QACDM Planck wCDN Planck N_{eff}CDM 50 60 70 80 90 100 H_0 (km s⁻¹ Mpc⁻¹) (HST Cepheids) Riess et al., 2011] (SNe la calibrated distance): $H_0 = 73.8 \pm 2.4 \,\mathrm{Km} \,\mathrm{s}^{-1} \,\mathrm{Mpc}^{-1}$ [Efstathiou 2013] (NGC 4258 calibrated distance): $H_0 = 70.6 \pm 3.3 \,\mathrm{Km} \,\mathrm{s}^{-1} \,\mathrm{Mpc}^{-1}$ (ACDM - CMB data only) [Planck 2013]: $H_0 = 67.3 \pm 1.2 \,\mathrm{Km} \,\mathrm{s}^{-1} \,\mathrm{Mpc}^{-1}$

[Planck 2015]: $H_0 = 67.27 \pm 0.66 \,\mathrm{Km} \,\mathrm{s}^{-1} \,\mathrm{Mpc}^{-1}$

[Cuesta et al., 2014] 68% CL error bars

Tension II: Cosmic Shear measurements

Cosmic shear: distortion of distant galaxy images by gravitational lensing of large scale structures \Rightarrow sensitive to non-linear matter density along the line of sight, amplitude of matter power spectrum.

Assuming ACDM model:

 $\sigma_8: \mbox{ rms fluctuation in total matter (baryons + CDM + neutrinos) in 8h^{-1} Mpc spheres, today;} $$\Omega_m: total matter density today divided by the critical density $$$

CFHTLenS weak lensing data alone [Heymans et al., 2013] (68% CL):

 $\sigma_8 (\Omega_m/0.27)^{0.46\pm0.02} = 0.774\pm0.04$

Planck + WMAP polarization + ACT/SPT [Planck 2013 Results XVI] (68% CL):

 $\sigma_8 (\Omega_m/0.27)^{0.46} = 0.89 \pm 0.03$

 2σ discrepancy!

Similar results from cluster counts:

Planck SZ Cluster Counts [Planck 2013 Results XX] (68% CL):

 $\sigma_8 (\Omega_m/0.27)^{0.3} = 0.76 \pm 0.03$

Planck + WMAP polarization + ACT/SPT [Planck 2013 Results XVI] (68% CL):

$$\sigma_8 (\Omega_m/0.27)^{0.3} = 0.87 \pm 0.02$$

 3σ discrepancy!

Qualitatively similar results from SPT clusters, Chandra Cluster Cosmology Project.

Unexplained discrepancies! Solutions?

S. Gariazzo

Constraints on Light Sterile Neutrinos from CMB and Cosmological Measurements

Solving the Tensions

Possible solution

Non-zero neutrino masses can help reconciling local Universe with CMB measurements.

Reasons:

- neutrino are relativistic in the primordial Universe
 - \Rightarrow free-streaming reduces the perturbations at small scales \Rightarrow lower σ_8 ;
- additional content in the early Universe
 - \Rightarrow shift in the matter-radiation equality \Leftrightarrow perturbation evolution is delayed.

Aim: to study if the neutrinos can help reconciling the different measurements.

Method:

- assume a cosmological model (ΛCDM + neutrinos);
- integrate Boltzmann equations to generate predictions;
- compare predictions with observations;
- put constraints on the theoretical model.

Framework: Bayesian analysis, Markov Chain Monte Carlo approach.

Datasets for the analysis

CAMB for Boltzmann equation integration +

CosmoMC for Markov Chain Monte Carlo (MCMC),

with different cosmological data:

- Planck: Planck 2013 TT spectra.
- WP: WMAP 9-year polarization data.
- *high-ℓ* spectra from Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT).
- *Barionic Acoustic Oscillations (BAO)*: values obtained from the SDSS-DR7, the SDSS BOSS-DR9 and the 6dFGS.
- LSS: WiggleZ Dark Energy Survey matter power spectrum at 4 different redshifts.
- H_0/HST : $H_0 = 73.8 \pm 2.4$ Km s⁻¹ Mpc⁻¹, using Cepheids and SN Ia calibration.
- LGC: Local Galaxy Cluster data from the Chandra Cluster Cosmology Project.
- *CFHTLens*: the CFHTLens 2D cosmic shear correlation function (from redshifts and shapes of 4.2 million galaxies with 0.2 < z < 1.3).
- *PSZ*: 189 galaxy clusters identified through the Sunayev Zel'Dovich (SZ) effect from Planck SZ (2013) catalogue.

In the following: CMB = Planck 2013 TT + WMAP 9-year polarization + ACT + SPT.

Neutrino Oscillations

Analogous to CKM mixing for quarks:

$$u_{lpha} = \sum_{k=1}^{3} U_{lpha k}
u_k \quad (lpha = e, \mu, au)$$

 ν_{α} flavour eigenstates, $U_{\alpha k}$ PMNS mixing matrix, ν_{k} mass eigenstates. Oscillations sensitive only to mass differences, not to absolute mass scale!

Two neutrino mixing ($\Delta m_{21}^2 = m_2^2 - m_1^2$, θ_{12} mixing angle):

$$P_{lpha
ightarrow eta, lpha
eq eta} = \sin^2(2 heta_{12})\sin^2\left(rac{\Delta m_{21}^2 L}{4E}
ight)$$

Current knowledge of the 3 active neutrino mixing: [PDG - Olive et al. (2014)]

$$\begin{split} \Delta m^2_{21} &= (7.53 \pm 0.18) \cdot 10^{-5} \, \mathrm{eV}^2 \\ |\Delta m^2_{32}| &= (2.44 \pm 0.06) \cdot 10^{-3} \, \mathrm{eV}^2 \ \rightarrow \ \text{hierarchy unknown} \\ \sin^2(2\theta_{12}) &= 0.846 \pm 0.021 \\ \sin^2(2\theta_{23}) &= 0.999^{+0.001}_{-0.018} \\ \sin^2(2\theta_{13}) &= 0.093 \pm 0.008 \\ \mathrm{CP} \ \text{violating phase} \ \delta_{\mathrm{CP}} \ \text{still unknown} \\ 2 \ \text{Majorana phases? only if } \nu \ \text{is Majorana particle} \end{split} \right\} U_{\alpha k} \end{split}$$

Short Baseline (SBL) anomaly

Neutrino oscillations $\Rightarrow \theta_{ij}$, Δm_{ij}^2 (and $\delta_{\rm CP}$). Problem: anomalies in SBL experiments $\Rightarrow \begin{cases} \text{ error in flux calculations?} \\ \text{deviations from 3-}\nu \text{ description?} \end{cases}$

A short review: [Abazajian et al., 2012]

- LSND: search for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.4 \div 1.5$ m/MeV. Observed a 3.8 σ excess of $\bar{\nu}_{e}$ events [Aguilar et al., 2001]
- *MiniBooNE*: search for $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.2 \div 2.6$ m/MeV. No ν_{e} excess detected, but $\bar{\nu}_{e}$ excess observed at 2.8 σ [MiniBooNE Collaboration, 2013]
- Reactor anomaly: re-evaluation of the expected anti-neutrino flux \Rightarrow excess of $\bar{\nu}_e$ events compared to predictions ($\sim 3\sigma$) with L < 100 m [Azabajan et al, 2012]
- Gallium anomaly: GALLEX and SAGE Gallium solar neutrino experiments give a 2.7 σ anomaly (disappearance of ν_e) [Giunti, Laveder, 2011]

Possible explanation: oscillations between active ν and a sterile ν at eV scale, driven by

$$\Delta m^2_{
m SBL} \simeq 1 \,\, {
m eV}^2$$

Possible commonly used models: [Giunti et al., 2013]

- 3 active $(m_i \ll 1 \text{ eV}) + 1$ sterile $(m_s \simeq 1 \text{ eV}) \rightarrow$ minimal extension
- 3 active ($m_i \ll 1$ eV) + 2 sterile ($m_s \simeq 1$ eV) ightarrow CP violation in SBL experiments

Introduction

- Cosmological Observations
- Tensions between local and CMB measurements
- Neutrino Oscillation Anomalies

2 Light Sterile Neutrino in Cosmology

- Cosmological Model
- Planck 2013 constraints
- Large Scale Structures constraints

3 Inflationary Freedom

- The Inflationary Paradigm
- Primordial Power Spectrum Parametrization
- Results

Cosmological Model: Neutrino Sector

Additional neutrinos \Rightarrow effects on Universe evolution!

3 active + 1 sterile ν scenario, we assume: $m_1 \simeq 0 \rightarrow \Delta m_{\text{SBL}}^2 = \Delta m_{41}^2 \simeq m_4^2$. Furthermore, sterile ν_s is weakly mixed with active ν : $m_s \simeq m_4 \simeq \sqrt{\Delta m_{\text{SBL}}^2}$

Sterile ν contribution in cosmology parametrized with: [Acero, Lesgourgues, 2009]

- energy density in the early universe, described by $\Delta N_{\text{eff}} = N_{\text{eff}} 3.046$: ν_s contribution to $\rho_R = \left[1 + \frac{7}{8} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^4 N_{\text{eff}}\right] \rho_{\gamma};$
- energy density today, described by $m_s^{\rm eff} = (94.1 \ {\rm eV}) \ \omega_s = \rho_s / \rho_c^0$. [Non relativistic: $\rho_s = m_s \ n_s$] Constant is given by $\sum m_i = (94.1 \ {\rm eV}) \ \omega_{\nu}$ for SM neutrinos.

Problem: not independent observables (ΔN_{eff} , m_s^{eff} in cosmology, m_s from oscillations)!

Two different possibilities:

[Dodelson, Widrow, 1994] (DW) model: $m_{DW}^{\rm eff} = m_s \Delta N_{\rm eff}^{DW}$ Thermal (TH) distribution for ν_s : $m_{TH}^{\text{eff}} = m_s (\Delta N_{\text{off}}^{TH})^{3/4}$

SBL data included as a prior on m_s .

Constraints on Light Sterile Neutrinos from CMB and Cosmological Measurements

Cosmological Model: ACDM sector

In the following we will study the Universe evolution considering a

```
\Lambda \text{CDM} + \nu_s \text{ model}
```

with 8 free parameters:

 $\{\omega_{\text{CDM}}, \omega_b, \theta_s, \tau, \mathsf{ln}(10^{10} A_s), n_s\} + \{N_{\text{eff}}, m_{DW, TH}^{\text{eff}}\}$

 $ω_{\text{CDM}}$ - CDM density today $ω_b$ - baryon density today $θ_s$ - angular sound horizon τ - optical depth to reionization $\ln(10^{10}A_s)$ - amplitude and n_s tilt of the primordial power spectrum

 $N_{\rm eff}$ effective number of ν_s $m_{DW,TH}^{\rm eff}$ physical mass of ν_s (DW or TH scenarios)

Primordial Power Spectrum (PPS) of scalar perturbations:

 $P_s(k) = A_s(k/k_0)^{n_s-1}$ with k_0 pivot scale, n_s and A_s as above.

Assume:

- $\sum m_{
 u, \mathrm{active}} = 0.06$ eV (minimal value for Normal Hierarchy)
- $0 \le m_{DW,TH}^{\mathrm{eff}} \le 5$
- 3.046 $\leq N_{\rm eff} \leq 6$

Neutrino Constraints with Planck DR1

- ν_s as Warm Dark Matter (WDM): $N_{\rm eff} \simeq 3.046$, large $m_s^{\rm eff}$ (large m_s);
- SBL prior: $m_s\simeq 1.2$ eV, but $N_{
 m eff}=$ 4 (u_s thermalized as $u_{
 m SM}$) disfavoured;
- (DW), (TH) models give similar results ($N_{\rm eff}$ slightly higher in (DW));
- only without SBL prior: positive correlation among $N_{\rm eff}$ and $H_0 \rightarrow$ tension with local measurements partially solved at large $N_{\rm eff}$.

Adding BAO and HST

• stronger limits on $m_s^{\rm eff}$, no ν_s WDM tail at small $N_{\rm eff}$;

- no SBL prior: higher $N_{\rm eff}$ admitted \rightarrow higher H_0 (correlation with $N_{\rm eff}$ holds);
- with SBL prior: slightly smaller $N_{\rm eff}$;
- with SBL prior: improvement in solving H_0 tension (driven by H_0 prior), but still low values. Due to direction in m_s^{eff} , N_{eff} plane forced by SBL prior on m_s .

MPK constraints and mass evidence

- LGC results give preference towards non-zero $m_s^{\text{eff}} \rightarrow$ non-zero m_s : smaller σ_8 from LGC can be addressed with massive ν_s (due to free streaming);
- no SBL prior: $N_{\rm eff}$ constraints almost unchanged;
- with SBL prior: preference for $N_{\rm eff} > 3.046$ at more than 2σ ;
- with SBL prior: $N_{\rm eff} = 4$ still hardly disfavoured.

Introduction

- Cosmological Observations
- Tensions between local and CMB measurements
- Neutrino Oscillation Anomalies

2 Light Sterile Neutrino in Cosmology

- Cosmological Model
- Planck 2013 constraints
- Large Scale Structures constraints

Inflationary Freedom

- The Inflationary Paradigm
- Primordial Power Spectrum Parametrization
- Results

Why Inflation?

Inflation developed in the 1980s to solve several shortcomings in the Big Bang model:

 Horizon problem: why is the Universe homogeneous and isotropic? widely separated regions cannot equilibrate during gravitational expansion, since there is no causal contact during the Universe evolution.

Solution: parts of the Universe in casual contact before inflation were widely separated during inflation, while today they are re-entering the expanding causal horizon.

• Flatness problem: is the Universe flat? Planck DR2: $\Omega_K = 0.000 \pm 0.005$ today, but this corresponds to exponentially small values in the early Universe $(|\Omega_{tot} - 1| < 10^{-18} \text{ at nucleosynthesis, even smaller at earlier times})$. Fine-tuning?

Solution: $|\Omega_{tot}(t) - 1| \propto \exp\left(-\sqrt{\frac{4\Lambda}{3}}t\right)$. If inflation lasts enough (at least 60 *e*-folds, namely $a_{end}/a_{begin} \simeq e^{60}$), Ω_{tot} is very small still today.

Inflation:
$$H^2 \simeq \frac{\Lambda}{3} \implies \dot{a} = \sqrt{\frac{\Lambda}{3}} a \implies a(t) \propto \exp\left(\sqrt{\frac{\Lambda}{3}}t\right) = \exp\left(Ht\right)$$

H Hubble parameter and Λ cosmological constant during inflation, a scale factor

Primordial Power Spectrum from Slow Roll Inflation

Slow roll inflation [Linde, 1982]:

inflation occurred by a scalar field (Inflaton) rolling down a potential energy hill.

End of inflation depends on

- the shape of the inflaton potential $V(\phi)$;
- the spatially variating perturbation of the inflaton field $\delta \phi(t, \vec{x})$.

Fluctuations in the inflaton modulate the end of inflation: in different regions, inflation ends at different times. $\delta\phi(t, \vec{x})$ converted into energy density fluctuations $\delta\rho$ after inflation.

⇒ small scale dependence of the PPS: we define $(n_s - 1) \equiv \frac{d \ln P_s(k)}{d \ln k} = 2 \frac{V''}{V} - 3 \left(\frac{V'}{V}\right)^2$,

Is n_s constant? Can the PPS deviate from a power-law?

more general than $P_s(k) = A_s(k/k_*)^{n_s-1}$.

Beyond Power-Law PPS Theory

Constraints on Light Sterile Neutrinos from CMB and Cosmological Measurements

PCHIP Parametrization Fix the PPS form leads to possible bias:

 \Rightarrow analysis with free, non-parametric form for the PPS.

Proposal: fix a series of nodes and use an interpolating function among them,

$$P_s(k) = P_0 \times f(k; P_{s,1}, \dots, P_{s,12})$$

 $P_0 = 2.36 \times 10^{-9}$

PCHIP

In our case:

"piecewise cubic Hermite interpolating polynomial" $f(k; P_{s,1}, ..., P_{s,12}) = \text{PCHIP}(k; P_{s,1}, ..., P_{s,12})$

Interpolate piecewise a series of nodes $P_{s,j} = P_s(k_j)$ with $j \in [1, 12]$:

- continue and derivable;
- preserve monotonicity of the nodes:
 - 1st derivative in the node fixed using the secants between consequent nodes;
 - if the monotonicity changes, the node is a local extremum;
- 2nd derivative not continue in the nodes.

Advantage over *natural cubic splines*: no spurious oscillations.

Light Sterile Neutrino Results - I

Change in the parametrization: $ACDM(PL PPS) + \nu_s$ model with

 $\{\omega_{ ext{CDM}}, \omega_b, heta_s, au, \ln(10^{10}A_s), n_s\} + \{N_{ ext{eff}}, m_s^{ ext{eff}}\}.$

Light Sterile Neutrino Results - I

Change in the parametrization: $\Lambda CDM(PCHIP PPS) + \nu_s$ model with

```
\{\omega_{\text{CDM}}, \omega_b, \theta_s, \tau, P_{s,1}, \ldots, P_{s,12}\} + \{\Delta N_{\text{eff}}, m_s\}.
```

We consider only thermal sterile neutrinos, physical mass m_s .

Results in Λ CDM sector almost unchanged (variations well inside 1σ range).

Changes in the Sterile neutrino sector:

 $\textit{COSMO} = \mathsf{CMB}(\mathsf{Planck13} + \mathsf{WMAP}\ \mathsf{Polarization} + \mathsf{ACT}/\mathsf{SPT}) + \mathsf{LSS}(\mathsf{WiggleZ}) + \mathsf{HST}(\mathsf{Riess2011}) + \mathsf{CFHTLenS} + \mathsf{PlanckSZ}$

Light Sterile Neutrino Results - II

Change in the parametrization: $\Lambda CDM(PCHIP PPS) + \nu_s$ model with

 $\{\omega_{\text{CDM}}, \omega_b, \theta_s, \tau, P_{s,1}, \ldots, P_{s,12}\} + \{\Delta N_{\text{eff}}, m_s\}.$

We consider only thermal sterile neutrinos, physical mass m_s .

Results in Λ CDM sector almost unchanged (variations well inside 1σ range).

Changes in the Sterile neutrino sector:

 $\textit{COSMO} = \mathsf{CMB}(\mathsf{Planck13} + \mathsf{WMAP}\ \mathsf{Polarization} + \mathsf{ACT}/\mathsf{SPT}) + \mathsf{LSS}(\mathsf{WiggleZ}) + \mathsf{HST}(\mathsf{Riess2011}) + \mathsf{CFHTLenS} + \mathsf{PlanckSZ}$

PPS Results

- CMB constraints for $1 \times 10^{-4} \text{ Mpc}^{-1} (\ell = 2) \le k \le 0.3 \text{ Mpc}^{-1} (\ell \simeq 2500);$
- outer k are not constrained by data;
- power-law is a good approximation in the range $7 \times 10^{-3} \text{ Mpc}^{-1} \le k \le 0.2 \text{ Mpc}^{-1}$;
- feature at $k = 2 \times 10^{-3} \text{ Mpc}^{-1}$ correspond to dip $\ell \simeq 22$ in CMB spectrum;
- feature at $k = 3.5 \times 10^{-3} \,\mathrm{Mpc}^{-1}$ correspond to small bump $\ell \simeq 40$ in CMB spectrum.

Conclusions

- ACDM explains very well CMB measurements;
- tension between CMB observations and local observations;
 - unaccounted systematics?
 - wrong models for the Universe evolution?
- sterile neutrinos suggested by SBL oscillation anomalies can help solving the tensions,
 - but problems in producing them with small $N_{\rm eff}$ (preferred by cosmology);
- non-standard inflation can help reconciling tensions through sterile neutrino presence in the early Universe.

Thank you for the attention!

Talks, Posters and Conferences

Talks

- ISAPP 2013, International Doctoral School, Canfranc (ES), July 20, 2013. "Testing 3+1 Neutrino Mass Models with Cosmology and Short-Baseline Experiments".
- New Frontiers in Theoretical Physics, Cortona (IT), May 29, 2014. "Reconciling cosmology and short-baseline experiments with invisible decay of light sterile neutrinos".

Posters

- **ISAPP 2013**, *International Doctoral School*, Canfranc (ES), July 14–23, 2013. "Testing 3+1 Neutrino Mass Models with Cosmology and Short-Baseline Experiments".
- Planck 2014, Ferrara (IT), December 1–5. "Light Sterile Neutrinos and Inflationary Freedom".
- The Primordial Universe after Planck, Paris (FR), December 15–19. "Light Sterile Neutrinos and Inflationary Freedom".

Other Conferences and Schools

- ISAPP 2014, International Doctoral School, Belgirate (IT), July 21–30. "Multi-Wavelength and Multi-Messenger Investigation of the Visible and Dark Universe".
- Neutrino Oscillation Workshop (NOW) 2014, Conca Specchiulla, Otranto (IT), September 8–14.

Papers

S. Gariazzo, C. Giunti, M. Laveder.

"Light Sterile Neutrinos in Cosmology and Short-Baseline Oscillation Experiments". *JHEP* 1311 (2013), p. 211. arXiv: 1309.3192 [hep-ph].

M. Archidiacono, N. Fornengo, S. Gariazzo, C. Giunti, S. Hannestad et al. "Light sterile neutrinos after BICEP-2". JCAP 1406 (2014), p. 031. arXiv: 1404.1794 [astro-ph.CO].

S. Gariazzo, C. Giunti, M. Laveder. "Cosmological Invisible Decay of Light Sterile Neutrinos". Submitted for publication (2014). arXiv: 1404.6160 [astro-ph.CO].

S. Gariazzo, C. Giunti, M. Laveder. "Light Sterile Neutrinos and Inflationary Freedom". Submitted for publication (2014). arXiv: 1412.7405 [astro-ph.CO].