

Light Sterile Neutrinos in Cosmology

Based on [SG et al., arxiv:1507.08204]

Stefano Gariazzo

University of Torino, INFN of Torino

http://personalpages.to.infn.it/~gariazzo/ gariazzo@to.infn.it

17th Lomonosov Conference, Moscow - August 24, 2015

1 Light Sterile Neutrino

- Oscillations in the 3+1 Neutrino Model
- Parameterization in Cosmology

2 Effects on Cosmology

- Effects from Relativistic Neutrinos
- Effects from non-Relativistic Neutrinos

Onstraints on Light Sterile Neutrino Properties

- CMB Constraints
- Tensions: CMB vs local measurements

Open issues

Light Sterile Neutrino

- Oscillations in the 3+1 Neutrino Model
- Parameterization in Cosmology

Effects on Cosmology

- Effects from Relativistic Neutrinos
- Effects from non-Relativistic Neutrinos

3 Constraints on Light Sterile Neutrino Properties

- CMB Constraints
- Tensions: CMB vs local measurements

Open issues

Summary on Neutrino Oscillations

Neutrino oscillations: analogous to CKM mixing for quarks, with

$$\nu_{\alpha} = \sum_{k=1}^{3} U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau)$$

 ν_{α} flavour eigenstates, $U_{\alpha k}$ PMNS mixing matrix, ν_{k} mass eigenstates

Current knowledge of the active
$$\nu$$
 mixing
 $(\Delta m_{ji}^2 = m_j^2 - m_i^2, \theta_{ij} \text{ mixing angles}):$
 $\Delta m_{5OL}^2 = (7.53 \pm 0.18) \cdot 10^{-5} \text{ eV}^2 = \Delta m_{21}^2$
 $\Delta m_{ATM}^2 = (2.44 \pm 0.06) \cdot 10^{-3} \text{ eV}^2(\text{NH}) = |\Delta m_{32}^2| \simeq |\Delta m_{31}^2|$
 $= (2.52 \pm 0.07) \cdot 10^{-3} \text{ eV}^2(\text{IH})$
 $\sin^2(2\theta_{12}) = 0.846 \pm 0.021$
 $\sin^2(2\theta_{23}) = 0.999^{+0.001}_{-0.018}(\text{NH}) - 1.000^{+0.000}_{-0.017}(\text{IH})$
 $\sin^2(2\theta_{13}) = (9.3 \pm 0.8) \cdot 10^{-2}$
[PDG - Olive et al. (2014)]

CP violation through phase δ (still unknown) possible only if sin $\theta_{13} \neq 0$.

S. Gariazzo "Light Sterile Neutrinos in Cosmology"

Neutrino Oscillation Anomalies

Observed oscillation anomalies in Short BaseLine (SBL) experiments. A short review: [SG et al., 2015]

- LSND: search for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.4 \div 1.5 \text{ m/MeV}$. Observed a 3.8σ excess of $\bar{\nu}_{e}$ events [Aguilar et al., 2001]
- *MiniBooNE*: search for $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.2 \div 2.6$ m/MeV. No ν_{e} excess detected, but $\bar{\nu}_{e}$ excess observed at 2.8σ [MiniBooNE, 2013]
- Reactor anomaly: re-evaluation of the expected anti-neutrino flux \Rightarrow excess of $\bar{\nu}_e$ events compared to predictions ($\sim 3\sigma$) with L < 100 m [Azabajan et al, 2012]
- Gallium anomaly: calibration of GALLEX and SAGE Gallium solar neutrino experiments give a 2.7 σ anomaly (disappearance of ν_e) [Giunti, Laveder, 2011]

S. Gariazzo

3+1 Neutrino Model

$$\begin{array}{l} \mathsf{SBL} \text{ anomalies} \Rightarrow \Delta m^2_{\mathsf{SBL}} \simeq 1 \,\, \mathsf{eV}^2 \\ \Downarrow \end{array}$$

Existence of an additional neutrino degree of freedom, mass around 1 eV, no weak interaction \Rightarrow *light, sterile neutrino* (*LS* ν)

3 active ($m_i \ll 1$ eV) + 1 sterile ($m_s \simeq 1$ eV) u scenario

1

We must update our mixing paradigm:

$$u_{lpha} = \sum_{k=1}^{3+1} U_{lpha k} \nu_k \quad (lpha = e, \mu, \tau, s)$$

 ν_s is mainly ν_4 :

$$m_s \simeq m_4 \simeq \sqrt{\Delta m_{41}^2} \simeq \sqrt{\Delta m_{SBL}^2}$$

S. Gariazzo "Light Sterile Neutrinos in Cosmology"

Active
$$\nu$$
:
 $\sum m_{\nu, \text{active}} \simeq 0$

 $\begin{array}{l} \mbox{Sterile ν:}\\ \mbox{0.82} \leq m_{\rm s}^2/{\rm eV}^2 \leq 2.19~(3\sigma)\\ \mbox{[Giunti et al, 2013]} \end{array}$

3

17th Lomonosov Conference, Moscow, 24/08/2015

Relativistic Sterile Neutrino: Effective Number $N_{\rm eff}$

Radiation energy density ρ_r in the early Universe: $\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_\gamma = \left[1 + 0.2271 N_{\text{eff}}\right] \rho_\gamma$

 ho_γ photon energy density, 7/8 is for fermions, $(4/11)^{4/3}$ due to photon reheating after neutrino decoupling

- $N_{
 m eff}
 ightarrow$ all the radiation contribution not given by photons
- $N_{\rm eff}\simeq 1$ correspond to a single family of active neutrino, in equilibrium in the early Universe
- Active neutrinos: $N_{\rm eff} = 3.046$ [Mangano et al., 2005] due to not instantaneous decoupling for the neutrinos
- additional LSu contributes with $\Delta N_{\mathrm{eff}} = N_{\mathrm{eff}} 3.046$:

$$\Delta N_{\rm eff} = \frac{\rho_s^{\rm rel}}{\rho_\nu} = \left[\frac{7}{8}\frac{\pi^2}{15}T_\nu^4\right]^{-1}\frac{1}{\pi^2}\int dp \, p^3 f_s(p) \quad \text{[Acero et al., 2009]}$$

 ρ_{ν} energy density for one active neutrino species, $\rho_s^{\rm rel}$ energy density of LS ν when relativistic, p neutrino momentum, $f_s(p)$ momentum distribution, $T_{\nu} = (4/11)^{1/3} T_{\gamma}$

S. Gariazzo "Light Sterile Neutrinos in Cosmology" 17th Lomonosov Conference, Moscow, 24/08/2015 4

Non-Relativistic Sterile Neutrino: Effective Mass m_s^{eff} $m_s \simeq 1 \text{ eV} \rightarrow \nu_s$ is non-relativistic today ($T_{\nu} \propto 10^{-4} \text{ eV}$) LS ν density parameter today:

$$\omega_s = \Omega_s h^2 = \frac{\rho_s}{\rho_c} h^2 = \frac{h^2}{\rho_c} \frac{m_s}{\pi^2} \int dp \, p^2 f_s(p) \quad \text{[Acero et al., 2009]}$$

 ρ_s energy density of non-relativistic LS ν , ρ_c critical density and h reduced Hubble parameter

Alternatively:

$$m_s^{\text{eff}} = 94.1 \,\text{eV}\,\omega_s$$
 [Planck 2013 Results, XVI]

The factor $(94.1 \,\mathrm{eV})$ is the same for the active neutrinos:

$$\omega_{
u, {\sf active}} = \sum_{{\sf active}} m_
u/(94.1\,{
m eV})$$

If
$$f_s(p) = f_{\text{active}}(p), \ m_s^{\text{eff}} \equiv m_s$$

S. Gariazzo "Light Sterile Neutrinos in Cosmology"

The momentum distribution function $f_s(p)$

 $\Delta N_{\rm eff}$, $m_s^{\rm eff}$ depend on the momentum distribution function $f_s(p)$.

 $LS\nu$ relativistic at decoupling $\Rightarrow f_s(p)$ independent of m_s . Active neutrinos decoupled at $T_{\nu} \simeq 1$ MeV. Is the same for $LS\nu$?

Oscillations + sterile \Rightarrow LS ν decouples not later than active neutrinos.

Production mechanism?

Thermal production (TH): temperature $T_s = \alpha T_{\nu}$ $f_s(p) = \frac{1}{e^{p/T_s} + 1}$ $\Delta N_{\rm eff} = \alpha^4$ $\omega_s = \alpha^3 m_s / (94.1 \,\mathrm{eV})$ $\underset{m_s^{\text{eff}} = \alpha^3 m_s = \Delta N_{\text{off}}^{3/4} m_s }{\Downarrow}$

S. Gariazzo "Light Sterile Neutrinos in Cosmology"

Non-thermal production: [Dodelson, Widrow 1993] (DW) model

17th Lomonosov Conference, Moscow, 24/08/2015

Light Sterile Neutrino

- Oscillations in the 3+1 Neutrino Model
- Parameterization in Cosmology

2 Effects on Cosmology

- Effects from Relativistic Neutrinos
- Effects from non-Relativistic Neutrinos

3 Constraints on Light Sterile Neutrino Properties

- CMB Constraints
- Tensions: CMB vs local measurements

Open issues

Additional Radiation in the Early Universe

S. Gariazzo "Light Sterile Neutrinos in Cosmology"

17th Lomonosov Conference, Moscow, 24/08/2015

Cosmic Microwave Background (CMB)

Anisotropies at the level of 10^{-5} : very high precision measurements are needed. Improvement of the CMB experiments in 20 years:

Starting configuration:

S. Gariazzo

"Light Sterile Neutrinos in Cosmology"

17th Lomonosov Conference, Moscow, 24/08/2015

If we increase $N_{\rm eff}$, all the other parameters fixed:

At z_{CMB} : higher $H \propto \rho_r \Rightarrow$ smaller comoving sound horizon $r_s \propto H^{-1}$ \Rightarrow decrease of the angular scale of the acoustic peaks $\theta_s = r_s/D_A$ \Rightarrow shift of the peaks at higher ℓ

S. Gariazzo "Light S

"Light Sterile Neutrinos in Cosmology"

17th Lomonosov Conference, Moscow, 24/08/2015

If we increase N_{eff} , plus ω_m to fix z_{eq} :

- Contribution from early ISW effect restored (first peak)
- different slope of the Sachs-Wolfe plateau, peak positions, envelope of high- ℓ peaks \Rightarrow due to later z_Λ
- S. Gariazzo "Light Sterile Neutrinos in Cosmology"

If we increase N_{eff} , plus ω_m , ω_{Λ} to fix z_{eq} , z_{Λ} :

- peak positions recovered;
- slope of the Sachs-Wolfe plateau recovered;
- peak amplitude not recovered!

S. Gariazzo

"Light Sterile Neutrinos in Cosmology"

Impact of additional non-relativistic neutrinos on the CMB

S. Gariazzo "Light Sterile Neutrinos in Cosmology" 17th Lomonosov Conference, Moscow, 24/08/2015

Free-streaming - I

Massive neutrino

damping in the perturbations due to free-streaming length $\lambda_{\textit{FS}}$

velocity
$$v_s \simeq c$$
Relativistic neutrinos $\lambda_{FS}/a \propto (aH)^{-1} \propto t^{1/3}$ (MD) $\langle v_s \rangle = \frac{\int p^2 dp f(p) p/m_s}{\int p^2 dp f(p)} \propto \frac{\Delta N_{\text{eff}}}{\omega_s}$ Non-relativistic neutrinos $\lambda_{FS}/a \propto (a^2H)^{-1} \propto t^{-1/3}$ (MD)

 \Rightarrow Maximum λ_{FS}/a at the time of non-relativistic transition.

Corresponds to
$$k_{\rm nr} \simeq 0.0178 \,\Omega_m^{1/2} \left(\frac{T_\nu}{T_s}\right)^{1/2} \left(\frac{m_s}{1\,{\rm eV}}\right)^{1/2} h\,{\rm Mpc}^{-1}$$

S. Gariazzo

Free-streaming - II

Damping occurs for all $k \gtrsim k_{\sf nr}$

[Neutrino Cosmology, Lesgourgues et al.] (fixed h, ω_m , ω_b , ω_Λ)

Expected constraints from future surveys: • Planck CMB + DES: $\sigma(m_{\nu}) \simeq 0.04-0.06$ eV [Font-Ribera et al., 2014] • Planck CMB + Euclid: $\sigma(m_{\nu}) \simeq 0.03$ eV [Audren et al., 2013]

S. Gariazzo

Light Sterile Neutrino

- Oscillations in the 3+1 Neutrino Model
- Parameterization in Cosmology

2 Effects on Cosmology

- Effects from Relativistic Neutrinos
- Effects from non-Relativistic Neutrinos

Constraints on Light Sterile Neutrino Properties

- CMB Constraints
- Tensions: CMB vs local measurements

Open issues

[SG et al., JHEP 1311 (2013) 211]

CMB and SBL joint constraints

• ν_s as Warm Dark Matter (WDM): $N_{\text{eff}} \simeq 3.046$, large m_s^{eff} (large m_s);

• SBL prior:
$$m_s \simeq 1.2$$
 eV, but

 $N_{
m eff}\simeq$ 4 (u_s thermalized as $u_{
m SM}$) disfavoured;

• (DW), (TH) models give similar results ($N_{\rm eff}$ slightly higher in (DW)).

S. Gariazzo "Light Sterile Neutrinos in Cosmology"

σ_8 Tension: cluster counts, weak lensing

Cosmic shear: distortion of distant galaxy images by gravitational lensing of LSS \Rightarrow sensitive to non-linear matter density along the line of sight/amplitude of matter power spectrum.

Assuming ACDM model:

 σ_8 : rms fluctuation in total matter (baryons + CDM + neutrinos) in $8h^{-1}$ Mpc spheres, today; Ω_m : total matter density today divided by the critical density

CFHTLenS weak lensing data alone [Heymans et al., 2013] (68% CL):

 $\sigma_8 (\Omega_m/0.27)^{0.46\pm0.02} = 0.774\pm0.04$

CMB results [Planck 2013] (68% CL):

 $\sigma_8 (\Omega_m/0.27)^{0.46} = 0.89 \pm 0.03$

 2σ discrepancy!

Similar results from cluster counts:

 Planck SZ Cluster Counts
 Planck + WMAP pol + ACT/SPT

 [Planck 2013 Results XX] (68% CL):
 [Planck 2013] (68% CL):

 $\sigma_8(\Omega_m/0.27)^{0.3} = 0.764 \pm 0.025$ $\sigma_8(\Omega_m/0.27)^{0.3} = 0.87 \pm 0.02$

 3σ discrepancy!

Qualitatively similar results from SPT clusters, Chandra Cluster Cosmology Project.

S. Gariazzo "Light Ste

"Light Sterile Neutrinos in Cosmology"

17th Lomonosov Conference, Moscow, 24/08/2015

- LSS results give preference towards non-zero $m_s^{\text{eff}} \rightarrow$ non-zero m_s : smaller σ_8 from LSS can be addressed with massive ν_s (due to free streaming);
- no SBL prior: $N_{\rm eff}$ constraints almost unchanged;
- with SBL prior: preference for $N_{\rm eff} > 3.046$ at more than 2σ ;
- with SBL prior: $N_{
 m eff} \simeq$ 4 still hardly disfavoured

S. Gariazzo

Light Sterile Neutrino

- Oscillations in the 3+1 Neutrino Model
- Parameterization in Cosmology

2) Effects on Cosmology

- Effects from Relativistic Neutrinos
- Effects from non-Relativistic Neutrinos

3 Constraints on Light Sterile Neutrino Properties

- CMB Constraints
- Tensions: CMB vs local measurements

Open issues

The Hubble Parameter H_0 Tension

Hubble parameter today: $v = H_0 d$, with $H_0 = H(z = 0)$

Local measurements:

H(z = 0), local and independent on evolution (model independent, systematics?)

CMB measurements (probe $z \simeq 1100$): H_0 from the cosmological evolution (model dependent, well controlled systematics) [Cuesta et al., 2014] 68% CL error bars

(HST Cepheids) [Riess et al., 2011] (SNe Ia calibrated distance): $H_0 = 73.8 \pm 2.4 \text{ Km s}^{-1} \text{ Mpc}^{-1}$ [Efstathiou 2013] (NGC 4258 calibrated distance): $H_0 = 70.6 \pm 3.3 \text{ Km s}^{-1} \text{ Mpc}^{-1}$

(ACDM - CMB data only) [Planck 2013]: $H_0 = 67.3 \pm 1.2 \text{ Km s}^{-1} \text{ Mpc}^{-1}$ [Planck 2015]: $H_0 = 67.27 \pm 0.66 \text{ Km s}^{-1} \text{ Mpc}^{-1}$

S. Gariazzo

"Light Sterile Neutrinos in Cosmology"

17th Lomonosov Conference, Moscow, 24/08/2015

[Planck 2015 Results: XIII]

Solving both σ_8 and H_0 Tension?

 H_0 increases $\Rightarrow \sigma_8$ increases (and viceversa)! The correlations do not help.

S. Gariazzo

Incomplete Thermalization

Many probes constrain $\Delta \textit{N}_{\rm eff} < 1.$ Do we need

- a mechanism to suppress oscillations and full thermalization of ν_s ?
- ullet to compensate $\Delta \textit{N}_{\rm eff}=1$ with additional mechanisms in Cosmology?

Some ideas: (see references in [SG et al., arxiv:1507.08204])

- large lepton asymmetry [Foot et al., 1995; Mirizzi et al., 2012; many more]
- new neutrino interactions [Bento et al., 2001; Dasgupta et al., 2014; Hannestad et al., 2014; Saviano et al., 2014; many more]
- entropy production after neutrino decoupling [Ho et al., 2013]
- very low reheating temperature [Gelmini et al., 2004; Smirnov et al., 2006]
- time varying dark energy components [Giusarma et al., 2012]
- larger expansion rate at the time of ν_s production [Rehagen et al., 2014]
- freedom in the Primordial Power Spectrum (PPS) of scalar perturbations from inflation compensate damping due to $N_{\rm eff} \neq 3.046$ [SG et al., 2015]

Conclusions

- Short BaseLine (SBL) oscillations suggest the presence of an additional neutrino, sterile, with $m_s \simeq m_4 \simeq 1~$ eV;
- ν_s can have measurable effects on cosmological observables;
- CMB measurements give strong constraints on ν_s properties;
- tension between CMB observations and local observations;
 - unaccounted systematics?
 - new physics?
- sterile neutrinos suggested by SBL oscillation anomalies can help solving the tensions,
 - ▶ but problems in producing them with small $\Delta N_{\rm eff}$ (preferred by cosmology);
- further investigation and/or new ideas needed!

Conclusions

- Short BaseLine (SBL) oscillations suggest the presence of an additional neutrino, sterile, with $m_s \simeq m_4 \simeq 1$ eV;
- ν_s can have measurable effects on cosmological observables;
- CMB measurements give strong constraints on ν_s properties;
- tension between CMB observations and local observations;
 - unaccounted systematics?
 - new physics?
- sterile neutrinos suggested by SBL oscillation anomalies can help solving the tensions,
 - ▶ but problems in producing them with small $\Delta N_{\rm eff}$ (preferred by cosmology);
- further investigation and/or new ideas needed!

Thank you for the attention