

Stefano Gariazzo

IFIC-CSIC, Valencia (ES)

gariazzo@ific.uv.es http://ific.uv.es/~gariazzo/

New developments in cosmology

Basato sul lavoro svolto presso Università e sez. INFN di Torino

6 aprile 2017 - CNS4 - Catania

Introduction of cosmology

- Cosmic Microwave Background (CMB)
- The ACDM model
- Tensions between local and CMB measurements

2 Sterile neutrinos

- Oscillations anomalies
- Light sterile neutrino as a possible solution
- Light sterile neutrino and cosmology

3 New sterile neutrino interaction with pseudoscalar mediator

- Suppressing thermalization with hidden interactions
- Cosmological constraints

Introduction of cosmology

- Cosmic Microwave Background (CMB)
- The ACDM model
- Tensions between local and CMB measurements

2) Sterile neutrinos

- Oscillations anomalies
- Light sterile neutrino as a possible solution
- Light sterile neutrino and cosmology

New sterile neutrino interaction with pseudoscalar mediator
 Suppressing thermalization with hidden interactions
 Cosmological constraints

4 Coupled Dark Energy Scenario

Cosmic Microwave Background (CMB)

Predicted in 1948 (Alpher, Herman): blackbody background radiation at $T \simeq 5$ K. Discovery (accidental): Penzias, Wilson 1964 \rightarrow Nobel prize 1978

Observations: perfect black body spectrum at $T_{\rm CMB}=2.72548\pm0.00057$ K [Fixsen, 2009] \rightarrow CMB is a remnant of the Big Bang.

Anisotropies at the level of 10^{-5} : very high precision measurements are needed. Improvement of the CMB experiments in 20 years:

Planck DR2 results - Temperature

Cosmological parameters

ACDM model described by 6 base parameters:

 $\omega_b = \Omega_b h^2$ baryon density today;

 $\omega_c = \Omega_c h^2$ CDM density today;

- au optical depth to reionization;
- θ angular scale of acoustic peaks;

 n_s tilt and

. . .

A_s amplitude of the power spectrum of initial curvature perturbations.

Other quantities can be studied:

- H₀ Hubble parameter today;
- σ_8 mean matter fluctuations at small scales;

Tension I: the Hubble parameter

Hubble parameter today: $v = H_0 d$, with $H_0 = H(z = 0)$

Local measurements: H(z = 0), local and independent on evolution (model independent, but systematics?)

CMB measurements (probe $z \simeq 1100$): H_0 from the cosmological evolution (model dependent, well controlled systematics)

Using HST Cepheids: [Efstathiou 2013] $H_0 = 72.5 \pm 2.5 \text{ Km s}^{-1} \text{ Mpc}^{-1}$ [Riess et al., 2016] $H_0 = 73.24 \pm 1.74 \text{ Km s}^{-1} \text{ Mpc}^{-1}$ (most recent) (ACDM model - CMB data only) [Planck 2013]: $H_0 = 67.3 \pm 1.2 \text{ Km s}^{-1} \text{ Mpc}^{-1}$

[Planck 2015]: $H_0 = 67.27 \pm 0.66 \,\mathrm{Km} \,\mathrm{s}^{-1} \,\mathrm{Mpc}^{-1}$

Tension I: the Hubble parameter

Hubble parameter today: $v = H_0 d$, with $H_0 = H(z = 0)$

Local measurements: H(z = 0), local and independent on evolution (model independent, but systematics?)

CMB measurements (probe $z \simeq 1100$): H_0 from the cosmological evolution (model dependent, well controlled systematics)

Using HST Cepheids: [Efstathiou 2013] $H_0 = 72.5 \pm 2.5 \text{ Km s}^{-1} \text{ Mpc}^{-1}$ [Riess et al., 2016] $H_0 = 73.24 \pm 1.74 \text{ Km s}^{-1} \text{ Mpc}^{-1}$ (most recent) (ACDM model - CMB data only) [Planck 2013]: $H_0 = 67.3 \pm 1.2 \text{ Km s}^{-1} \text{ Mpc}^{-1}$ [Planck 2015]: $H_0 = 67.27 \pm 0.66 \text{ Km s}^{-1} \text{ Mpc}^{-1}$

 $\sigma_8: \mbox{ rms fluctuation in total matter (baryons + CDM + neutrinos) in 8h^{-1} Mpc spheres, today;} $$\Omega_m: total matter density today divided by the critical density $$$

KiDS-450 (68% CL): [Hildebrandt et al., 2016]

 $\sigma_8(\Omega_m)^{0.5} = 0.408 \pm 0.021$

CMB results (68% CL): [Planck 2015]

 $\sigma_8(\Omega_m)^{0.5} = 0.466 \pm 0.013$

 σ_8 : rms fluctuation in total matter (baryons + CDM + neutrinos) in $8h^{-1}$ Mpc spheres, today; Ω_m : total matter density today divided by the critical density

Similar results from CFHTLenS weak lensing, Planck SZ and SPT clusters, ...

 σ_8 : rms fluctuation in total matter (baryons + CDM + neutrinos) in $8h^{-1}$ Mpc spheres, today; Ω_m : total matter density today divided by the critical density

 KiDS-450 (68% CL):

 [Hildebrandt et al., 2016]
 $\sim 2.5\sigma$ discrepancy!
 CMB results (68% CL):

 $\sigma_8(\Omega_m)^{0.5} = 0.408 \pm 0.021$ $\sigma_8(\Omega_m)^{0.5} = 0.466 \pm 0.013$

Similar results from CFHTLenS weak lensing, Planck SZ and SPT clusters, ...

Count of satellites galaxies of the Milky Way Observed (classical + SDSS): Predicted (CDM only): $N_{sat} = 63 \pm 13$ $(N_{sat} \simeq 160)$

 σ_8 : rms fluctuation in total matter (baryons + CDM + neutrinos) in $8h^{-1}$ Mpc spheres, today; Ω_m : total matter density today divided by the critical density

 KiDS-450 (68% CL):

 [Hildebrandt et al., 2016]
 $\sim 2.5\sigma$ discrepancy!
 CMB results (68% CL):

 $\sigma_8(\Omega_m)^{0.5} = 0.408 \pm 0.021$ $\sigma_8(\Omega_m)^{0.5} = 0.466 \pm 0.013$

Similar results from CFHTLenS weak lensing, Planck SZ and SPT clusters, ...

Count of satellites galaxies of the Milky Way Observed (classical + SDSS): Predicted (CDM only): $N_{sat} = 63 \pm 13$ \sim $N_{sat} \simeq 160$

Alert!

- is the nonlinear evolution well known?
 see e.g. [Planck 2015 Results, papers XIII and XIV]
- are we taking into account all the astrophysical systematics? [Joudaki et al., 2016] [Kitching et al., 2016]
- did we count all the satellite galaxies? (very difficult detection)

Introduction of cosmology

- Cosmic Microwave Background (CMB)
- The **ACDM** model
- Tensions between local and CMB measurements

2 Sterile neutrinos

- Oscillations anomalies
- Light sterile neutrino as a possible solution
- Light sterile neutrino and cosmology

New sterile neutrino interaction with pseudoscalar mediator
 Suppressing thermalization with hidden interactions
 Cosmological constraints

4 Coupled Dark Energy Scenario

Neutrino Oscillations

Analogous to CKM mixing for quarks: [Pontecorvo, 1958] [Maki, Nakagawa, Sakata, 1962]

$$u_{\alpha} = \sum_{k=1}^{3} U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau)$$

 ν_{α} flavour eigenstates, $\textit{U}_{\alpha\textit{k}}$ PMNS mixing matrix, $\nu_{\textit{k}}$ mass eigenstates.

Current knowledge of the 3 active ν mixing: [PDG - Patrignani et al. (2016)]

$$\begin{split} \Delta m_{jj}^2 &= m_j^2 - m_i^2, \, \theta_{ij} \text{ mixing angles} \\ \text{NO: Normal Ordering, } m_1 < m_2 < m_3 \\ \text{IO: Inverted Ordering, } m_3 < m_1 < m_2 \end{split} \\ \Delta m_{SOL}^2 &= (7.53 \pm 0.18) \cdot 10^{-5} \text{ eV}^2 \qquad = \Delta m_{21}^2 \\ \Delta m_{ATM}^2 &= (2.44 \pm 0.06) \cdot 10^{-3} \text{ eV}^2(\text{NO}) \qquad = |\Delta m_{32}^2| \simeq |\Delta m_{31}^2| \\ &= (2.51 \pm 0.06) \cdot 10^{-3} \text{ eV}^2(\text{IO}) \\ \sin^2(\theta_{12}) &= 0.304 \pm 0.014 \\ \sin^2(\theta_{23}) &= 0.51 \pm 0.05(\text{NO}) - 0.50 \pm 0.05(\text{IO}) \\ \sin^2(\theta_{13}) &= 0.0219 \pm 0.0012 \end{split}$$

CP violating phase $\delta_{\rm CP}$ still unknown. Hint: $\delta_{\rm CP} = -\pi/2$? [T2K Collaboration, 2015]

Short Baseline (SBL) anomaly

[SG et al., JPG 43 (2016) 033001]

Problem: anomalies in SBL experiments $\Rightarrow \begin{cases} \text{errors in flux calculations?} \\ \text{deviations from 3-}\nu \text{ description?} \end{cases}$ A short review:

- LSND search for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.4 \div 1.5$ m/MeV. Observed a 3.8 σ excess of $\bar{\nu}_e$ events [Aguilar et al., 2001]
- Reactor re-evaluation of the expected anti-neutrino flux \Rightarrow disappearance of $\bar{\nu}_e$ events compared to predictions ($\sim 3\sigma$) with L < 100 m [Azabajan et al, 2012]
- Gallium calibration of GALLEX and SAGE Gallium solar neutrino experiments give a 2.7 σ anomaly (disappearance of ν_e) [Giunti, Laveder, 2011]
- MiniBooNE (inconclusive) search for $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.2 \div 2.6$ m/MeV. No ν_e excess detected, but $\bar{\nu}_e$ excess observed at 2.8σ [MiniBooNE Collaboration, 2013]

Possible explanation:

Additional squared mass difference $\Delta m_{\rm SBL}^2 \simeq 1 \, {\rm eV}^2$

See also

[SG et al., 2017]

$$Prior The example of the example o$$

10

[SG et al., arxiv:1703.00860]

(Relativistic) LSu in cosmology: $\Delta N_{\rm eff}$

Radiation energy density ρ_r in the early Universe: $\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_{\gamma} = \left[1 + 0.2271 N_{\text{eff}}\right] \rho_{\gamma}$

 ho_γ photon energy density, 7/8 is for fermions, $(4/11)^{4/3}$ due to photon reheating after neutrino decoupling

• $N_{ m eff} ightarrow$ all the radiation contribution not given by photons

- $N_{
 m eff}\simeq 1$ correspond to a single family of active neutrino, in equilibrium in the early Universe
- Active neutrinos: $N_{\rm eff} = 3.046$ [Mangano et al., 2005] due to not instantaneous decoupling for the neutrinos
- \blacksquare + Non Standard Interactions: 3.040 $< N_{
 m eff} <$ 3.059 [de Salas et al., 2016]
- additional LS ν contributes with $\Delta N_{\rm eff} = N_{\rm eff} 3.046$:

$$\Delta N_{\rm eff} = \frac{\rho_s^{\rm rel}}{\rho_\nu} = \left[\frac{7}{8}\frac{\pi^2}{15}T_\nu^{\ 4}\right]^{-1}\frac{1}{\pi^2}\int dp \, p^3 f_s(p) \quad \text{[Acero et al., 2009]}$$

 ρ_{ν} energy density for one active neutrino species, $\rho_s^{\rm rel}$ energy density of LS ν when relativistic, p neutrino momentum, $f_{\rm S}(p)$ momentum distribution, $T_{\nu}=(4/11)^{1/3} T_{\gamma}$

(Relativistic) LS ν in cosmology: $\Delta N_{\rm eff}$

Radiation energy density ρ_r in the early Universe: $\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_{\gamma} = \left[1 + 0.2271 N_{\text{eff}}\right] \rho_{\gamma}$

 ho_γ photon energy density, 7/8 is for fermions, $(4/11)^{4/3}$ due to photon reheating after neutrino decoupling

- $N_{
 m eff}
 ightarrow$ all the radiation contribution not given by photons
- $N_{\rm eff} \simeq 1$ correspond to a single family of active neutrino, in equilibrium in the early Universe
- Active neutrinos: N_{eff} = 3.046 [Mangano et al., 2005] due to not instantaneous decoupling for the neutrinos
- = + Non Standard Interactions: 3.040 $< N_{
 m eff} <$ 3.059 [de Salas et al., 2016]

• additional LS ν contributes with $\Delta N_{\rm eff} = N_{\rm eff} - 3.046$:

 ρ_{ν} energy density for one active neutrino species, $\rho_s^{\rm rel}$ energy density of LS ν when relativistic, p neutrino momentum, $f_s(p)$ momentum distribution, $T_{\nu} = (4/11)^{1/3} T_{\gamma}$

(Relativistic) LS ν in cosmology: $\Delta N_{\rm eff}$

Radiation energy density ρ_r in the early Universe: $\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_{\gamma} = \left[1 + 0.2271 N_{\text{eff}}\right] \rho_{\gamma}$

 ho_γ photon energy density, 7/8 is for fermions, $(4/11)^{4/3}$ due to photon reheating after neutrino decoupling

- $N_{
 m eff}
 ightarrow$ all the radiation contribution not given by photons
- $N_{
 m eff}\simeq 1$ correspond to a single family of active neutrino, in equilibrium in the early Universe
- Active neutrinos: N_{eff} = 3.046 [Mangano et al., 2005] due to not instantaneous decoupling for the neutrinos
- = + Non Standard Interactions: 3.040 $< N_{
 m eff} <$ 3.059 [de Salas et al., 2016]
- additional LSu contributes with $\Delta N_{
 m eff} = N_{
 m eff} 3.046$:

$$\Delta N_{\rm eff} = \frac{\rho_s^{\rm rel}}{\rho_\nu} = \left[\frac{7}{8}\frac{\pi^2}{15}T_\nu^4\right]^{-1}\frac{1}{\pi^2}\int dp\, p^3 f_s(p) \quad \text{[Acero et al., 2009]}$$

 ρ_{ν} energy density for one active neutrino species, $\rho_{s}^{\rm rel}$ energy density of LS ν when relativistic, p neutrino momentum, $f_{s}(p)$ momentum distribution, $T_{\nu}=(4/11)^{1/3} T_{\gamma}$

Unless $L\gtrsim \mathcal{O}(10^{-3})$, $\Delta N_{ m eff}\simeq 1$

See also: [Saviano et al., PRD 87 (2013) 073006], [Hannestad et al., JCAP 08 (2015) 019]

[to be precise: $\Delta N_{\rm eff}$ is slightly smaller at CMB decoupling, when the LS ν starts to be non-relativistic]

S. Gariazzo

"New developments in cosmology"

Catania - 6/4/17

(Non-relativistic) LS ν in cosmology: m_s^{eff} and m_s

 $m_s \simeq 1 \text{ eV} \rightarrow \nu_s$ is non-relativistic today ($T_\nu \propto 10^{-4} \text{ eV}$) LS ν density parameter today:

$$\omega_s = \Omega_s h^2 = \frac{\rho_s}{\rho_c} h^2 = \frac{h^2}{\rho_c} \frac{m_s}{\pi^2} \int dp \, p^2 f_s(p) \quad \text{[Acero et al., 2009]}$$

 ρ_s energy density of non-relativistic LS ν , ρ_c critical density and h reduced Hubble parameter

Alternatively: $m_s^{\text{eff}} = 94.1 \,\text{eV}\,\omega_s$

[Planck 2013 Results, XVI]

The factor $(94.1 \,\mathrm{eV})$ is the same for the active neutrinos:

$$\omega_{
u, {
m active}} = \sum_{{
m active}} m_
u/(94.1\,{
m eV})$$

If
$$f_s(p) = f_{\text{active}}(p), \ m_s^{\text{eff}} \equiv m_s$$

Thermal production
$$\implies f_s(p) = \frac{1}{e^{p/T_s} + 1} \implies m_s^{\text{eff}} = \Delta N_{\text{eff}}^{3/4} m_s$$

(Non-relativistic) LS ν in cosmology: m_s^{eff} and m_s

 $m_s \simeq 1 \text{ eV} \rightarrow \nu_s$ is non-relativistic today ($T_\nu \propto 10^{-4} \text{ eV}$) LS ν density parameter today:

$$\omega_s = \Omega_s h^2 = \frac{\rho_s}{\rho_c} h^2 = \frac{h^2}{\rho_c} \frac{m_s}{\pi^2} \int dp \, p^2 f_s(p) \quad \text{[Acero et al., 2009]}$$

 ρ_s energy density of non-relativistic LS ν , ρ_c critical density and h reduced Hubble parameter

Alternatively: $m_s^{\text{eff}} = 94.1 \,\text{eV}\,\omega_s$

[Planck 2013 Results, XVI]

The factor $(94.1 \,\mathrm{eV})$ is the same for the active neutrinos:

$$\omega_{
u, {
m active}} = \sum_{
m active} m_
u/(94.1\,{
m eV})$$

If
$$f_s(p) = f_{\text{active}}(p), \ m_s^{\text{eff}} \equiv m_s$$

Thermal production
$$\implies f_s(p) = \frac{1}{e^{p/T_s} + 1} \implies m_s^{\text{eff}} = \Delta N_{\text{eff}}^{3/4} m_s$$

S. Gariazzo

$LS\nu$ constraints from cosmology

BBN constraints: $N_{\text{eff}} = 2.90 \pm 0.22 \text{ (BBN} + Y_p)$ [Peimbert et al., 2016]

Summary: $\Delta N_{\text{eff}} = 1$ from LS ν incompatible with $m_s \simeq 1$ eV!

TT=Planck 2015 TT + lowTEB

All the constraints are at 2σ CL

"New developments in cosmology"

Catania - 6/4/17

Introduction of cosmology

- Cosmic Microwave Background (CMB)
- The ACDM model
- Tensions between local and CMB measurements

2 Sterile neutrinos

- Oscillations anomalies
- Light sterile neutrino as a possible solution
- Light sterile neutrino and cosmology

New sterile neutrino interaction with pseudoscalar mediator
 Suppressing thermalization with hidden interactions

Cosmological constraints

4 Coupled Dark Energy Scenario

S. Gariazzo

"New developments in cosmology"

Catania - 6/4/17

13/26

Constraints on the pseudoscalar interaction?

- Problems with ΔN_{eff} = 1? solved (incomplete thermalization due to suppression of active-sterile oscillations in primordial plasma);
- mass bounds avoided
 - \Rightarrow large m_s allowed and preference for $m_s \simeq$ 4 eV;
- high values of H₀ predicted by cosmology
 - \Rightarrow more compatible with local measurements.

Results - II

PSE: posterior on *m_s* wider

 preference for high SBL peaks? (agreement with recent results by [IceCube, 2016] and [MINOS, 2016])

[Archidiacono, SG et al., JCAP 08 (2016) 067]

- PSE: very close to Riess2016 results (better than ACDM+N_{eff} + m_s)
- ACDM+1 ν_s : even higher H_0 , but from $\Delta N_{\text{eff}} = 1$ and $m_s \simeq 0$.

Catania - 6/4/17

Results - III

What about the σ_8 tension (matter perturbations at small scales)? ACDM model:

Pseudoscalar model:

- smaller Ω_m today. Good?
- Also higher $\sigma_8 \implies$ no improvement! The tension remains.
- due to higher H_0 , not to reduced matter fluctuations.

[Archidiacono, SG et al., JCAP 08 (2016) 067]

Cosmological constraints are too much permissive!

- Regions at $\Delta m_{41}^2 \simeq 6 \text{ eV}^2$ (slightly) enlarged
- (small) new region at $\Delta m_{41}^2 \simeq 8.5 \text{ eV}^2$ appears (3 σ CL only)
- Towards [IceCube, 2016] and [MINOS, 2016] hints for $\Delta m_{41}^2 \gtrsim 1$ eV?

[Archidiacono, SG et al., JCAP 08 (2016) 067]

Cosmological constraints are too much permissive!

- Regions at $\Delta m_{41}^2 \simeq 6 \text{ eV}^2$ (slightly) enlarged
- (small) new region at $\Delta m_{41}^2 \simeq 8.5 \text{ eV}^2$ appears (3 σ CL only)
- Towards [IceCube, 2016] and [MINOS, 2016] hints for $\Delta m_{41}^2 \gtrsim 1$ eV?

2017 update of global 3+1 fit

[SG et al., arxiv:1703.00860]

2017 update of global 3+1 fit

[SG et al., arxiv:1703.00860]

Introduction of cosmology

- Cosmic Microwave Background (CMB)
- The ACDM model
- Tensions between local and CMB measurements

2 Sterile neutrinos

- Oscillations anomalies
- Light sterile neutrino as a possible solution
- Light sterile neutrino and cosmology

New sterile neutrino interaction with pseudoscalar mediator
 Suppressing thermalization with hidden interactions
 Cosmological constraints

Cosmological constraints

4 Coupled Dark Energy Scenario

Model - I

[Murgia et al., JCAP 1604 (2016) 014]

Model - I

[Murgia et al., JCAP 1604 (2016) 014]

Model - II

[Murgia et al., JCAP 1604 (2016) 014]

Coupled Dark Energy (CDE) influences the CMB spectrum:

[Murgia et al., JCAP 1604 (2016) 014]

• $\Omega_c h^2 \propto \rho_{\rm DM}$ ACDM: PlanckTT+lowP ----is physical MOD1: PlanckTT+lowP MOD1 DM→DE MOD2: PlanckTT+lowP less DM today 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 $\Omega_c h^2$ MOD2 DE→DM ACDM: PlanckTT+lowP more DM today MOD1: PlanckTT+lowP also higher h! MOD2: PlanckTT+lowP $\Omega_{\Lambda} \propto \rho_{\Lambda}/h^2$ is non-physical, 0.7 0.8 0.9 0.5 0.6 1.0 Ω_{Λ} depends on h! $h = H_0 / (100 \,\mathrm{Km \, s^{-1} \, Mpc^{-1}})$ dimensionless Hubble parameter "New developments in cosmology" Catania - 6/4/17 22/26

S. Gariazzo

Results - I

[Murgia et al., JCAP 1604 (2016) 014]

Results - II - H_0 and σ_8 tensions

more DM in the early Universe \longrightarrow stronger nonlinear evolution in MOD1 $H^2 \propto \rho_{\Lambda} \propto a^{-3(w_{\Lambda}+1)-\xi} \longrightarrow$ higher H_0 in MOD2

MOD2 is better for reconciling CMB and local determinations

CMB=Planck TT+low- ℓ polarization

 $\mathsf{ALL} = \mathsf{CMB} + \mathsf{high} \cdot \ell \ \mathsf{polarization} + \mathsf{BAO}/\mathsf{RSD} \ (\mathsf{BOSS} \ \mathsf{DR11}, \ \mathsf{SDSS} \ \mathsf{MGS}, \ \mathsf{6dF}) + \ \mathsf{Supernovae} \ (\mathsf{JLA}) + \ \mathsf{Planck} \ \mathsf{lensing} \ \mathsf{trispectrum}$

S. Gariazzo

"New developments in cosmology"

Catania - 6/4/17

23/26

Results - III - ξ and w_{Λ}

MOD1

MOD2

- JLA $\rightarrow \xi \neq 0$?
- BAO/RSD→ $w_{\Lambda} \neq -1?$

- CMB \rightarrow poor constraints on w_{Λ}
- BAO/RSD, JLAightarrow preference for less DM today, $w_{\Lambda} \simeq -1$

red points: CDE + LS ν models

Catania - 6/4/17

[Murgia et al., JCAP 1604 (2016) 014]

Results - IV - What about $LS\nu$?

No significant variations for the 2D contours in the $\sigma_8 - H_0$ plane

CDE models does not affect the LS ν bounds!

Upper limits for $m_s^{\rm eff}$, $N_{\rm eff} \lesssim 3.5$ \longrightarrow thermalized LS ν is still disfavoured

Conclusions

- Universe evolution explained well by ACDM model
 - ${\scriptstyle \blacksquare}$ cosmological constraints on standard particles (neutrinos) \checkmark
 - additional particles ?
 - tensions between cosmological and local measurements (H_0 , σ_8) ×
 - unaccounted systematics or new physics ?
- ν oscillations anomalies at Short-Baseline distances
 - light ($m_s \simeq 1 \text{ eV}$) sterile neutrino (LS ν) ?
 - ${\scriptstyle \blacksquare}$ cosmological bounds disfavor a thermalized, ${\it m_s}\simeq 1$ eV neutrino ${\sf X}$
 - if $\Delta N_{
 m eff} <$ 1, the LSu is allowed \checkmark
 - new mechanisms suppress active-sterile oscillations in the early Universe ?
- new hidden sterile neutrino-pseudoscalar (ϕ) interaction ?
 - $\,$ light pseudoscalar to avoid mass bounds after LS $\!\nu$ annihilation \checkmark
 - = $\Delta N_{
 m eff} \lesssim 1$ allowed by matter effects induced by ϕ \checkmark
 - larger m_4 preferred \checkmark
 - LS ν can reduce H_0 and σ_8 tensions $\sqrt{?}$
- Coupling between Dark Matter (DM) and Dark Energy (DE) ?
 - can reduce H_0 and σ_8 tensions (DE \rightarrow DM) \checkmark
 - LS ν bounds unchanged imes

Conclusions

Universe evolution explained well by ACDM model

- ${\scriptstyle \blacksquare}$ cosmological constraints on standard particles (neutrinos) \checkmark
- additional particles ?
- tensions between cosmological and local measurements (H_0 , σ_8) ×
 - unaccounted systematics or new physics ?
- ν oscillations anomalies at Short-Baseline distances
 - light ($m_s \simeq 1$ eV) sterile neutrino (LSu) ?
 - cosmological bounds disfavor a thermalized, $m_s \simeq 1$ eV neutrino ×
 - if $\Delta N_{
 m eff} <$ 1, the LSu is allowed \checkmark
 - new mechanisms suppress active-sterile oscillations in the early Universe ?
- new hidden sterile neutrino-pseudoscalar (ϕ) interaction ?
 - $\,$ light pseudoscalar to avoid mass bounds after LS $\!\nu$ annihilation \checkmark
 - = $\Delta N_{
 m eff} \lesssim 1$ allowed by matter effects induced by ϕ \checkmark
 - larger m_4 preferred \checkmark
 - LS ν can reduce H_0 and σ_8 tensions $\sqrt{?}$
- Coupling between Dark Matter (DM) and Dark Energy (DE) ?
 - can reduce H_0 and σ_8 tensions (DE \rightarrow DM) \checkmark
 - LS ν bounds unchanged imes

Grazie dell'attenzione!